wig*_*ing 5 python numpy scipy pandas
我有时间和电压的数据点,创建如下所示的曲线.
该time数据是
array([ 0.10810811, 0.75675676, 1.62162162, 2.59459459,
3.56756757, 4.21621622, 4.97297297, 4.97297297,
4.97297297, 4.97297297, 4.97297297, 4.97297297,
4.97297297, 4.97297297, 5.08108108, 5.18918919,
5.2972973 , 5.51351351, 5.72972973, 5.94594595,
6.27027027, 6.59459459, 7.13513514, 7.67567568,
8.32432432, 9.18918919, 10.05405405, 10.91891892,
11.78378378, 12.64864865, 13.51351351, 14.37837838,
15.35135135, 16.32432432, 17.08108108, 18.16216216,
19.02702703, 20. , 20. , 20. ,
20. , 20. , 20. , 20. ,
20.10810811, 20.21621622, 20.43243243, 20.64864865,
20.97297297, 21.40540541, 22.05405405, 22.91891892,
23.78378378, 24.86486486, 25.83783784, 26.7027027 ,
27.56756757, 28.54054054, 29.51351351, 30.48648649,
31.56756757, 32.64864865, 33.62162162, 34.59459459,
35.67567568, 36.64864865, 37.62162162, 38.59459459,
39.67567568, 40.75675676, 41.83783784, 42.81081081,
43.89189189, 44.97297297, 46.05405405, 47.02702703,
48.10810811, 49.18918919, 50.27027027, 51.35135135,
52.43243243, 53.51351351, 54.48648649, 55.56756757,
56.75675676, 57.72972973, 58.81081081, 59.89189189])
Run Code Online (Sandbox Code Playgroud)
而且volts数据是
array([ 4.11041056, 4.11041056, 4.11041056, 4.11041056, 4.11041056,
4.11041056, 4.11041056, 4.10454545, 4.09794721, 4.09208211,
4.08621701, 4.07961877, 4.07228739, 4.06568915, 4.05909091,
4.05175953, 4.04516129, 4.03782991, 4.03123167, 4.02463343,
4.01803519, 4.01217009, 4.00557185, 3.99970674, 3.99384164,
3.98797654, 3.98284457, 3.97771261, 3.97331378, 3.96891496,
3.96451613, 3.96085044, 3.95645161, 3.95205279, 3.9483871 ,
3.94398827, 3.94032258, 3.93665689, 3.94325513, 3.94985337,
3.95645161, 3.96378299, 3.97038123, 3.97624633, 3.98284457,
3.98944282, 3.99604106, 4.0026393 , 4.00923754, 4.01510264,
4.02096774, 4.02609971, 4.02903226, 4.03196481, 4.03416422,
4.0356305 , 4.03709677, 4.03856305, 4.03929619, 4.04002933,
4.04076246, 4.04222874, 4.04296188, 4.04296188, 4.04369501,
4.04442815, 4.04516129, 4.04516129, 4.04589443, 4.04589443,
4.04662757, 4.04662757, 4.0473607 , 4.0473607 , 4.04809384,
4.04809384, 4.04809384, 4.04882698, 4.04882698, 4.04882698,
4.04956012, 4.04956012, 4.04956012, 4.04956012, 4.05029326,
4.05029326, 4.05029326, 4.05029326])
Run Code Online (Sandbox Code Playgroud)
我想确定标记为A,B,C,D和E的点的位置.点A是斜率从零到未定义的第一个位置.B点是线不再垂直的位置.C点是曲线的最小值.D点是曲线不再垂直的地方.E点是斜率再次接近零的位置.下面的Python代码确定了A点和C点的位置.
tdiff = np.diff(time)
vdiff = np.diff(volts)
# point A
idxA = np.where(vdiff < 0)[0][0]
timeA = time[idxA]
voltA = volts[idxA]
# point C
idxC = volts.idxmin()
timeC = time[idxC]
voltC = volts[idxC]
Run Code Online (Sandbox Code Playgroud)
如何确定曲线B,D和E所代表的曲线上的其他位置?
您正在寻找标记斜率变为或从零或无穷大的任何位置的点.我们实际上并不需要在任何地方计算斜率:要么和,要么反之亦然,或者相同.yn - yn-1 == 0yn+1 - yn != 0x
我们可以采取差异x.如果两个连续元素中的一个为零,那么diff的diff将是该点处的diff或负diff.因此,我们只想找到并标记所有点,diff(x) == diff(diff(x))并diff(x) != 0根据阵列之间的大小差异进行适当调整.我们也想要所有相同的点y.
在numpy术语中,这可以写成如下
def masks(vec):
d = np.diff(vec)
dd = np.diff(d)
# Mask of locations where graph goes to vertical or horizontal, depending on vec
to_mask = ((d[:-1] != 0) & (d[:-1] == -dd))
# Mask of locations where graph comes from vertical or horizontal, depending on vec
from_mask = ((d[1:] != 0) & (d[1:] == dd))
return to_mask, from_mask
to_vert_mask, from_vert_mask = masks(time)
to_horiz_mask, from_horiz_mask = masks(volts)
Run Code Online (Sandbox Code Playgroud)
请记住,掩码是根据二阶差异计算的,因此它们比输入短两个元素.掩码中的元素对应于输入数组中的元素,在前沿和后沿具有单元素边界(因此[1:-1]下面的索引).您可以使用掩码将掩码转换为索引,np.nonzero或者可以使用掩码作为索引直接获取x值和y值:
def apply_mask(mask, x, y):
return x[1:-1][mask], y[1:-1][mask]
to_vert_t, to_vert_v = apply_mask(to_vert_mask, time, volts)
from_vert_t, from_vert_v = apply_mask(from_vert_mask, time, volts)
to_horiz_t, to_horiz_v = apply_mask(to_horiz_mask, time, volts)
from_horiz_t, from_horiz_v = apply_mask(from_horiz_mask, time, volts)
plt.plot(time, volts, 'b-')
plt.plot(to_vert_t, to_vert_v, 'r^', label='Plot goes vertical')
plt.plot(from_vert_t, from_vert_v, 'kv', label='Plot stops being vertical')
plt.plot(to_horiz_t, to_horiz_v, 'r>', label='Plot goes horizontal')
plt.plot(from_horiz_t, from_horiz_v, 'k<', label='Plot stops being horizontal')
plt.legend()
plt.show()
Run Code Online (Sandbox Code Playgroud)
这是结果图:
请注意,由于分类是单独进行的,因此"点A"被正确识别为垂直度开始和水平度结束的点.问题是根据这些标准,"E点"似乎不可解析.放大显示所有增殖点正确识别水平线段:
您可以通过from_horiz完全丢弃来选择"Point E"的"正确"版本,并且只选择最后一个值to_horiz:
to_horiz_t, to_horiz_v = apply_mask(to_horiz_mask, time, volts)
to_horiz_t, to_horiz_v = to_horiz_t[-1], to_horiz_v[-1]
plt.plot(time, volts, 'b-')
plt.plot(*apply_mask(to_vert_mask, time, volts), 'r^', label='Plot goes vertical')
plt.plot(*apply_mask(from_vert_mask, time, volts), 'kv', label='Plot stops being vertical')
plt.plot(to_horiz_t, to_horiz_v, 'r>', label='Plot goes horizontal')
plt.legend()
plt.show()
Run Code Online (Sandbox Code Playgroud)
我用它作为明星扩展结果的展示apply_mask.结果图是:
这几乎就是你要找的情节.丢弃from_horiz也使得"点A"只能作为降垂直,这是很好的识别.
作为to_horizshow中的多个值,此方法对数据中的噪声非常敏感.您的数据非常顺利,但这种方法不太适用于未经过滤的原始测量.
| 归档时间: |
|
| 查看次数: |
2502 次 |
| 最近记录: |