如何将 Pandas DataFrame 中的字典列表展平为几列?

Oma*_*r14 0 python json dataframe python-2.7 pandas

我有一个 pandas 数据框,如下所示:

User | Query|                                 Filters                 
----------------------------------------------------------------------------------------- 
1    |  abc | [{u'Op': u'and', u'Type': u'date', u'Val': u'1992'},{u'Op': u'and', u'Type': u'sex', u'Val': u'F'}]
1    |  efg | [{u'Op': u'and', u'Type': u'date', u'Val': u'2000'},{u'Op': u'and', u'Type': u'col', u'Val': u'Blue'}] 
1    |  fgs | [{u'Op': u'and', u'Type': u'date', u'Val': u'2001'},{u'Op': u'and', u'Type': u'col', u'Val': u'Red'}]        
2    |  hij | [{u'Op': u'and', u'Type': u'date', u'Val': u'2002'}]  
2    |  dcv | [{u'Op': u'and', u'Type': u'date', u'Val': u'2001'},{u'Op': u'and', u'Type': u'sex', u'Val': u'F'}]     
2    |  tyu | [{u'Op': u'and', u'Type': u'date', u'Val': u'1999'},{u'Op': u'and', u'Type': u'col', u'Val': u'Yellow'}]     
3    |  jhg | [{u'Op': u'and', u'Type': u'date', u'Val': u'2001'},{u'Op': u'and', u'Type': u'sex', u'Val': u'M'}]    
4    |  mlh | [{u'Op': u'and', u'Type': u'date', u'Val': u'2001'}]  
Run Code Online (Sandbox Code Playgroud)

我期望的结果:

User| Query |  date | sex | col
-------------------------------- 
1   | abc   | 1992  |  F  |
1   | efg   | 2000  |     | Blue
1   | fgs   | 2001  |     | Red
2   | hij   | 2002  |     |
2   | dcv   | 2001  |  F  |
2   | tyu   | 1999  |     | Yellow
3   | jhg   | 2001  |     |
4   | mlh   | 2001  |  H  |
Run Code Online (Sandbox Code Playgroud)

我正在使用 pandas 0.21.0 和 python 2.7。

示例数据:

df = pd.DataFrame([{'user': 1,'query': 'abc', 'Filters': [{u'Op': u'and', u'Type': u'date', u'Val': u'1992'},{u'Op': u'and', u'Type': u'sex', u'Val': u'F'}]},
              {'user': 1,'query': 'efg', 'Filters': [{u'Op': u'and', u'Type': u'date', u'Val': u'2000'},{u'Op': u'and', u'Type': u'col', u'Val': u'Blue'}]},
              {'user': 1,'query': 'fgs', 'Filters': [{u'Op': u'and', u'Type': u'date', u'Val': u'2001'},{u'Op': u'and', u'Type': u'col', u'Val': u'Red'}]},
              {'user': 2 ,'query': 'hij', 'Filters': [{u'Op': u'and', u'Type': u'date', u'Val': u'2002'}]},
              {'user': 2 ,'query': 'dcv', 'Filters': [{u'Op': u'and', u'Type': u'date', u'Val': u'2001'},{u'Op': u'and', u'Type': u'sex', u'Val': u'F'}]},
              {'user': 2 ,'query': 'tyu', 'Filters':[{u'Op': u'and', u'Type': u'date', u'Val': u'1999'},{u'Op': u'and', u'Type': u'col', u'Val': u'Yellow'}]},
              {'user': 3 ,'query': 'jhg', 'Filters':[{u'Op': u'and', u'Type': u'date', u'Val': u'2001'},{u'Op': u'and', u'Type': u'sex', u'Val': u'M'}]},
              {'user': 4 ,'query': 'mlh', 'Filters':[{u'Op': u'and', u'Type': u'date', u'Val': u'2001'}]},
             ])
Run Code Online (Sandbox Code Playgroud)

我尝试了很多解决方案:

任何建议将不胜感激!

jla*_*rcy 5

假设您已经导入了 MCWE 中定义的数据:

data = [{'user': 1,'query': 'abc', 'Filters': [{u'Op': u'and', u'Type': u'date', u'Val': u'1992'},{u'Op': u'and', u'Type': u'sex', u'Val': u'F'}]},
              {'user': 1,'query': 'efg', 'Filters': [{u'Op': u'and', u'Type': u'date', u'Val': u'2000'},{u'Op': u'and', u'Type': u'col', u'Val': u'Blue'}]},
              {'user': 1,'query': 'fgs', 'Filters': [{u'Op': u'and', u'Type': u'date', u'Val': u'2001'},{u'Op': u'and', u'Type': u'col', u'Val': u'Red'}]},
              {'user': 2 ,'query': 'hij', 'Filters': [{u'Op': u'and', u'Type': u'date', u'Val': u'2002'}]},
              {'user': 2 ,'query': 'dcv', 'Filters': [{u'Op': u'and', u'Type': u'date', u'Val': u'2001'},{u'Op': u'and', u'Type': u'sex', u'Val': u'F'}]},
              {'user': 2 ,'query': 'tyu', 'Filters':[{u'Op': u'and', u'Type': u'date', u'Val': u'1999'},{u'Op': u'and', u'Type': u'col', u'Val': u'Yellow'}]},
              {'user': 3 ,'query': 'jhg', 'Filters':[{u'Op': u'and', u'Type': u'date', u'Val': u'2001'},{u'Op': u'and', u'Type': u'sex', u'Val': u'M'}]},
              {'user': 4 ,'query': 'mlh', 'Filters':[{u'Op': u'and', u'Type': u'date', u'Val': u'2001'}]},
             ]
Run Code Online (Sandbox Code Playgroud)

然后,您正在寻找 Pandas json_normalize方法来进行数据标准化:

from pandas.io.json import json_normalize
df = json_normalize(data, 'Filters', ['query', 'user'])
Run Code Online (Sandbox Code Playgroud)

它返回一个规范化的 DataFrame 版本,其中您的列json扩展为同名类型列:

     Op  Type     Val  user query
0   and  date    1992     1   abc
1   and   sex       F     1   abc
2   and  date    2000     1   efg
3   and   col    Blue     1   efg
4   and  date    2001     1   fgs
5   and   col     Red     1   fgs
6   and  date    2002     2   hij
7   and  date    2001     2   dcv
8   and   sex       F     2   dcv
9   and  date    1999     2   tyu
10  and   col  Yellow     2   tyu
11  and  date    2001     3   jhg
12  and   sex       M     3   jhg
13  and  date    2001     4   mlh
Run Code Online (Sandbox Code Playgroud)

现在,您将旋转DataFrame 将类型模式转换为列:

df = df.pivot_table(index=['user', 'query', 'Op'], columns='Type', aggfunc='first')
Run Code Online (Sandbox Code Playgroud)

它导致:

                   Val            
Type               col  date   sex
user query Op                     
1    abc   and    None  1992     F
     efg   and    Blue  2000  None
     fgs   and     Red  2001  None
2    dcv   and    None  2001     F
     hij   and    None  2002  None
     tyu   and  Yellow  1999  None
3    jhg   and    None  2001     M
4    mlh   and    None  2001  None
Run Code Online (Sandbox Code Playgroud)

最后,如果索引打扰您,您可以清理并重置索引:

df.columns = df.columns.droplevel(0)
df.reset_index(inplace=True)
Run Code Online (Sandbox Code Playgroud)

它返回您请求的 MCVE 输出:

Type  user query   Op     col  date   sex
0        1   abc  and    None  1992     F
1        1   efg  and    Blue  2000  None
2        1   fgs  and     Red  2001  None
3        2   dcv  and    None  2001     F
4        2   hij  and    None  2002  None
5        2   tyu  and  Yellow  1999  None
6        3   jhg  and    None  2001     M
7        4   mlh  and    None  2001  None
Run Code Online (Sandbox Code Playgroud)

不列

在这个最终的 DataFrame 中,第一列似乎被称为Type,但事实并非如此。相反,它是一个没有名称的整数索引:

df.index
RangeIndex(start=0, stop=8, step=1)
Run Code Online (Sandbox Code Playgroud)

并且调用列索引Type,它不包含任何调用的模式Type(因此没有具有此名称的列)。

df.columns
Index(['user', 'query', 'Op', 'col', 'date', 'sex'], dtype='object', name='Type')
Run Code Online (Sandbox Code Playgroud)

这就是为什么您无法删除该列Type(在 中使用的列pivot_table),因为它不存在。

如果你想删除这个假列,你需要为行创建一个新的索引:

df.set_index(['user', 'query'], inplace=True)
Run Code Online (Sandbox Code Playgroud)

如果列索引名称困扰您,您可以重置它:

df.columns.name = None
Run Code Online (Sandbox Code Playgroud)

它导致:

             Op     col  date   sex
user query                         
1    abc    and    None  1992     F
     efg    and    Blue  2000  None
     fgs    and     Red  2001  None
2    dcv    and    None  2001     F
     hij    and    None  2002  None
     tyu    and  Yellow  1999  None
3    jhg    and    None  2001     M
4    mlh    and    None  2001  None
Run Code Online (Sandbox Code Playgroud)

创建新索引时始终检查它的唯一性是一个很好的做法:

df.index.is_unique
True
Run Code Online (Sandbox Code Playgroud)

文件中的数据

如果您的数据位于文件中,则应首先使用 PSLjson模块将其导入到变量中:

import json
with open(path) as file:
    data = json.load(file)
Run Code Online (Sandbox Code Playgroud)

这样就可以解决问题,然后回到我的答案的开头。