Keras模型采用Forever训练与dask数据框

use*_*459 2 python large-data dataframe keras dask

我正在处理内存不足的大型数据集,因此被引入了Dask数据框。我从文档中了解到,Dask不会将整个数据集加载到内存中。相反,它创建了多个线程,这些线程将根据需要从磁盘中获取记录。因此,我假设批处理大小为500的keras模型,在训练时它在内存中应该只有500条记录。但是当我开始训练时。这需要永远。可能是我做错了。请提出建议。

训练数据的形状:1000000 * 1290

import glob
import dask.dataframe
paths_train = glob.glob(r'x_train_d_final*.csv')

X_train_d = dd.read_csv('.../x_train_d_final0.csv')
Y_train1 = keras.utils.to_categorical(Y_train.iloc[,1], num_classes)
batch_size = 500
num_classes = 2
epochs = 5

model = Sequential()
model.add(Dense(645, activation='sigmoid', input_shape=(1290,),kernel_initializer='glorot_normal'))
#model.add(Dense(20, activation='sigmoid',kernel_initializer='glorot_normal'))
model.add(Dense(num_classes, activation='sigmoid'))

model.compile(loss='binary_crossentropy',
          optimizer=Adam(decay=0),
          metrics=['accuracy'])

history = model.fit(X_train_d.to_records(), Y_train,
                batch_size=batch_size,
                epochs=epochs,
                verbose=1,
                class_weight = {0:1,1:6.5},
                shuffle=False)
Run Code Online (Sandbox Code Playgroud)

vse*_*nko 7

您应该使用fit_generator()顺序模型与发电机或具有序列实例。两者都提供了仅加载一部分数据的正确方法。

Keras文档提供了一个很好的例子:

def generate_arrays_from_file(path):
    while 1:
        f = open(path)
        for line in f:
            # create Numpy arrays of input data
            # and labels, from each line in the file
            x, y = process_line(line)
            yield (x, y)
        f.close()

model.fit_generator(generate_arrays_from_file('/my_file.txt'),
                    steps_per_epoch=1000, epochs=10)
Run Code Online (Sandbox Code Playgroud)