如何修复Parallel for() - 循环不返回与()循环的串行不同的值?

use*_*374 0 c# parallel-processing multithreading

我遇到以下代码的问题.代码没有错误,但是当使用并行for循环和常规for循环时,我会收到不同的输出值.我需要使并行for循环正常工作,因为我运行此代码数千次.有谁知道为什么我的并行for循环返回不同的输出?

private object _lock = new object();

public double CalculatePredictedRSquared()
    {
        double press = 0, tss = 0, press2 = 0, press1 = 0;
        Vector<double> output = CreateVector.Dense(Enumerable.Range(0, 400).Select(i => Convert.ToDouble(i)).ToArray());
        List<double> input1 = new List<double>(Enumerable.Range(0, 400).Select(i => Convert.ToDouble(i)));
        List<double> input2 = new List<double>(Enumerable.Range(200, 400).Select(i => Convert.ToDouble(i)));

            Parallel.For(0, output.Count, i =>
            {
                ConcurrentBag<MultipleRegressionInfo> listMRInfoBag = new ConcurrentBag<MultipleRegressionInfo>(listMRInfo);
                ConcurrentBag<double> vectorArrayBag = new ConcurrentBag<double>(output);
                ConcurrentBag<double[]> matrixList = new ConcurrentBag<double[]>();

                lock (_lock)
                {
                    matrixList.Add(input1.Where((v, k) => k != i).ToArray());
                    matrixList.Add(input2.Where((v, k) => k != i).ToArray());
                }

                var matrixArray2 = CreateMatrix.DenseOfColumnArrays(matrixList);
                var actualResult = vectorArrayBag.ElementAt(i);
                var newVectorArray = CreateVector.Dense(vectorArrayBag.Where((v, j) => j != i).ToArray());
                var items = FindBestMRSolution(matrixArray2, newVectorArray);
                double estimate1 = 0;

                if (items != null)
                {
                    lock (_lock)
                    {
                        var y = 0d;
                        var independentCount = matrixArray2.RowCount;
                        var dependentCount = newVectorArray.Count;

                        if (independentCount == dependentCount)
                        {
                            var populationCount = independentCount;
                            y = newVectorArray.Average();

                            for (int l = 0; l < matrixArray2.ColumnCount; l++)
                            {
                                var avg = matrixArray2.Column(l).Average();
                                y -= avg * items[l];
                            }
                        }

                        for (int m = 0; m < 2; m++)
                        {
                            var coefficient = items[m];

                            if (m == 0)
                            {
                                estimate1 += input1.ElementAt(i) * coefficient;
                            }
                            else
                            {
                                estimate1 += input2.ElementAt(i) * coefficient;
                            }
                        }

                        estimate1 += y;
                    }
                }
                else
                {
                    lock (_lock)
                    {
                        estimate1 = 0;
                    }
                }

                lock (_lock)
                {
                    press1 += Math.Pow(actualResult - estimate1, 2);
                }
            });

            for (int i = 0; i < output.Count; i++)
            {
                List<double[]> matrixList = new List<double[]>();
                matrixList.Add(input1.Where((v, k) => k != i).ToArray());
                matrixList.Add(input2.Where((v, k) => k != i).ToArray());
                var matrixArray = CreateMatrix.DenseOfColumnArrays(matrixList);
                var actualResult = output.ElementAt(i);
                var newVectorArray = CreateVector.Dense(output.Where((v, j) => j != i).ToArray());
                var items = FindBestMRSolution(matrixArray, newVectorArray);
                double estimate = 0;

                if (items != null)
                {
                    var y = CalculateYIntercept(matrixArray, newVectorArray, items);
                    for (int m = 0; m < 2; m++)
                    {
                        var coefficient = items[m];

                        if (m == 0)
                        {
                            estimate += input1.ElementAt(i) * coefficient;
                        }
                        else
                        {
                            estimate += input2.ElementAt(i) * coefficient;
                        }
                    }
                }
                else
                {
                    estimate = 0;
                }

                press2 += Math.Pow(actualResult - estimate, 2);
            }

            tss = CalculateTotalSumOfSquares(vectorArray.ToList());
            var test1 = 1 - (press1 / tss);
            var test2 = 1 - (press2 / tss);
}

public Vector<double> CalculateWithQR(Matrix<double> x, Vector<double> y)
    {
        Vector<double> result = null;

            result = MultipleRegression.QR(x, y);

            for (int i = 0; i < result.Count; i++)
            {
                var value = result.ElementAt(i);

                if (Double.IsNaN(value) || Double.IsInfinity(value))
                {
                    return null;
                }
            }

        return result;
    }

    public Vector<double> CalculateWithNormal(Matrix<double> x, Vector<double> y)
    {
        Vector<double> result = null;

            result = MultipleRegression.NormalEquations(x, y);

            for (int i = 0; i < result.Count; i++)
            {
                var value = result.ElementAt(i);

                if (Double.IsNaN(value) || Double.IsInfinity(value))
                {
                    return null;
                }
            }

        return result;
    }

    public Vector<double> CalculateWithSVD(Matrix<double> x, Vector<double> y)
    {
        Vector<double> result = null;

            result = MultipleRegression.Svd(x, y);

            for (int i = 0; i < result.Count; i++)
            {
                var value = result.ElementAt(i);

                if (Double.IsNaN(value) || Double.IsInfinity(value))
                {
                    return null;
                }
            }

        return result;
    }

    public Vector<double> FindBestMRSolution(Matrix<double> x, Vector<double> y)
    {
        Vector<double> result = null;

            result = CalculateWithNormal(x, y);

            if (result != null)
            {
                return result;
            }
            else
            {
                result = CalculateWithSVD(x, y);

                if (result != null)
                {
                    return result;
                }
                else
                {
                    result = CalculateWithQR(x, y);

                    if (result != null)
                    {
                        return result;
                    }
                }
            }

        return result;
    }

public double CalculateTotalSumOfSquares(List<double> dependentVariables)
    {
        double tts = 0;

            for (int i = 0; i < dependentVariables.Count; i++)
            {
                tts += Math.Pow(dependentVariables.ElementAt(i) - dependentVariables.Average(), 2);
            }

        return tts;
    }
Run Code Online (Sandbox Code Playgroud)

实际输出(更新结果):

test1 = 137431.12889999992 (parallel for loop)

test2 = 7.3770258447689254E- (regular for loop)
Run Code Online (Sandbox Code Playgroud)

结语:如何设置符合MCVE的测试

这可能是一个公平的方法来准备一个确实完全可重复的MCVE代码+ A/B/C/... DataSET-s的设置,放在一个可立即运行的[ IDE&Testing Sandbox,这里有超链接] [1 ],社区成员可以单击重新运行按钮并专注于根本原因分析,而不是解码和重新设计不完整SLOC的堆.

如果这是为O/P运行,它将运行其他社区成员,O/P已要求他们给出答案或帮助.

在线尝试!

我的新版代码:

public double CalculatePredictedRSquared()
    {
        Vector<double> output = CreateVector.Dense(Enumerable.Range(0, 400).Select(i => Convert.ToDouble(i)).ToArray());
        List<double> input1 = new List<double>(Enumerable.Range(0, 400).Select(i => Convert.ToDouble(i)));
        List<double> input2 = new List<double>(Enumerable.Range(200, 400).Select(i => Convert.ToDouble(i)));
        double tss = CalculateTotalSumOfSquares(output.ToList());

        IEnumerable<int> range = Enumerable.Range(0, output.Count);
        var query = range.Select(i => DoIt(i, output, input1, input2));
        var result = 1 - (query.Sum() / tss);
        return result;
    }

    public double DoIt(int i, Vector<double> output, List<double> input1, List<double> input2)
    {
        List<double[]> matrixList = new List<double[]>
                {
                    input1.Where((v, k) => k != i).ToArray(),
                    input2.Where((v, k) => k != i).ToArray()
                };
        var matrixArray = CreateMatrix.DenseOfColumnArrays(matrixList);
        var actualResult = output.ElementAt(i);
        var newVectorArray = CreateVector.Dense(output.Where((v, j) => j != i).ToArray());
        var items = FindBestMRSolution(matrixArray, newVectorArray);
        double estimate = 0;

        if (items != null)
        {
            var y = CalculateYIntercept(matrixArray, newVectorArray, items);
            for (int m = 0; m < 2; m++)
            {
                var coefficient = items[m];

                if (m == 0)
                {
                    estimate += input1.ElementAt(i) * coefficient;
                }
                else
                {
                    estimate += input2.ElementAt(i) * coefficient;
                }
            }
        }
        else
        {
            estimate = 0;
        }

       return Math.Pow(actualResult - estimate, 2);
    }
Run Code Online (Sandbox Code Playgroud)

Eri*_*ert 12

这整件事是狗的早餐; 你应该完全放弃对并行性的尝试.

重来.这就是我想要你做的.我要你写一个方法DoIt返回double,并采取了INT i任何其他国家需要做循环的单次迭代.

然后,您将按如下方式重写您的方法:

public double CalculatePredictedRSquared()
{
    Vector<double> output = whatever;
    // Whatever other state you need here
    IEnumerable<int> range = Enumerable.Range(0, output.Count);
    var query = range.Select(i => DoIt(i, whatever_other_state));
    return query.Sum();
}
Run Code Online (Sandbox Code Playgroud)

得到它了? DoIt是你现在循环的东西.它必须接受i,以及output你需要传递给它的其他任何载体.它必须计算一个double - 在这种情况下,估计误差的平方 - 并返回该double.

它必须是纯的:它不能读取或写入任何非局部变量,它不能调用任何非纯方法,并且每次给定相同的输入时它必须给出完全相同的结果.纯方法是编写,读取,理解,测试和并行化的最简单方法; 在进行数学计算时总是尝试编写纯方法.

编写测试用例DoIt,然后测试它.这是一种纯粹的方法; 你应该能够编写大量的测试用例.同样地测试所谓的任何纯方法DoIt.

一旦你DoIt对正确和纯洁都感到满意,那么神奇就会发生.只需将其更改为:

range.AsParallel().Select...
Run Code Online (Sandbox Code Playgroud)

然后比较并行和非并行版本.它们应该产生相同的结果; 如果没有,那么有些东西是不纯的.弄清楚它是什么.

然后,验证并行版本更快.如果没有,那么你就没有做足够的工作DoIt来证明并行性; 有关详细信息,请参阅https://en.wikipedia.org/wiki/Amdahl%27s_law.

  • @ user3610374:你告诉我!你有没有写过一些测试?它能产生正确的结果吗? (6认同)