Dan*_*gas 22 python json normalize python-3.x pandas
我一直在尝试normalize
一个非常嵌套的json文件,我稍后会分析.我正在努力的是如何超过一个级别来规范化.
我浏览了pandas.io.json.json_normalize文档,因为它完全符合我的要求.
我能够将其中的一部分标准化,现在了解字典是如何工作的,但我仍然不在那里.
使用以下代码,我只能获得第一级.
import json
import pandas as pd
from pandas.io.json import json_normalize
with open('authors_sample.json') as f:
d = json.load(f)
raw = json_normalize(d['hits']['hits'])
authors = json_normalize(data = d['hits']['hits'],
record_path = '_source',
meta = ['_id', ['_source', 'journal'], ['_source', 'title'],
['_source', 'normalized_venue_name']
])
Run Code Online (Sandbox Code Playgroud)
我试图用下面的代码'挖掘''作者'字典,但是record_path = ['_source', 'authors']
抛出了我TypeError: string indices must be integers
.据我所知json_normalize
,逻辑应该是好的,但我仍然不太明白如何与dict
vs 潜入json list
.
我甚至经历了这个简单的例子.
authors = json_normalize(data = d['hits']['hits'],
record_path = ['_source', 'authors'],
meta = ['_id', ['_source', 'journal'], ['_source', 'title'],
['_source', 'normalized_venue_name']
])
Run Code Online (Sandbox Code Playgroud)
下面是json文件的一大块(5条记录).
{u'_shards': {u'failed': 0, u'successful': 5, u'total': 5},
u'hits': {u'hits': [{u'_id': u'7CB3F2AD',
u'_index': u'scibase_listings',
u'_score': 1.0,
u'_source': {u'authors': None,
u'deleted': 0,
u'description': None,
u'doi': u'',
u'is_valid': 1,
u'issue': None,
u'journal': u'Physical Review Letters',
u'link': None,
u'meta_description': None,
u'meta_keywords': None,
u'normalized_venue_name': u'phys rev lett',
u'pages': None,
u'parent_keywords': [u'Chromatography',
u'Quantum mechanics',
u'Particle physics',
u'Quantum field theory',
u'Analytical chemistry',
u'Quantum chromodynamics',
u'Physics',
u'Mass spectrometry',
u'Chemistry'],
u'pub_date': u'1987-03-02 00:00:00',
u'pubtype': None,
u'rating_avg_weighted': 0,
u'rating_clarity': 0.0,
u'rating_clarity_weighted': 0.0,
u'rating_innovation': 0.0,
u'rating_innovation_weighted': 0.0,
u'rating_num_weighted': 0,
u'rating_reproducability': 0,
u'rating_reproducibility_weighted': 0.0,
u'rating_versatility': 0.0,
u'rating_versatility_weighted': 0.0,
u'review_count': 0,
u'tag': [u'mass spectra', u'elementary particles', u'bound states'],
u'title': u'Evidence for a new meson: A quasinuclear NN-bar bound state',
u'userAvg': 0.0,
u'user_id': None,
u'venue_name': u'Physical Review Letters',
u'views_count': 0,
u'volume': None},
u'_type': u'listing'},
{u'_id': u'7AF8EBC3',
u'_index': u'scibase_listings',
u'_score': 1.0,
u'_source': {u'authors': [{u'affiliations': [u'Punjabi University'],
u'author_id': u'780E3459',
u'author_name': u'munish puri'},
{u'affiliations': [u'Punjabi University'],
u'author_id': u'48D92C79',
u'author_name': u'rajesh dhaliwal'},
{u'affiliations': [u'Punjabi University'],
u'author_id': u'7D9BD37C',
u'author_name': u'r s singh'}],
u'deleted': 0,
u'description': None,
u'doi': u'',
u'is_valid': 1,
u'issue': None,
u'journal': u'Journal of Industrial Microbiology & Biotechnology',
u'link': None,
u'meta_description': None,
u'meta_keywords': None,
u'normalized_venue_name': u'j ind microbiol biotechnol',
u'pages': None,
u'parent_keywords': [u'Nuclear medicine',
u'Psychology',
u'Hydrology',
u'Chromatography',
u'X-ray crystallography',
u'Nuclear fusion',
u'Medicine',
u'Fluid dynamics',
u'Thermodynamics',
u'Physics',
u'Gas chromatography',
u'Radiobiology',
u'Engineering',
u'Organic chemistry',
u'High-performance liquid chromatography',
u'Chemistry',
u'Organic synthesis',
u'Psychotherapist'],
u'pub_date': u'2008-04-04 00:00:00',
u'pubtype': None,
u'rating_avg_weighted': 0,
u'rating_clarity': 0.0,
u'rating_clarity_weighted': 0.0,
u'rating_innovation': 0.0,
u'rating_innovation_weighted': 0.0,
u'rating_num_weighted': 0,
u'rating_reproducability': 0,
u'rating_reproducibility_weighted': 0.0,
u'rating_versatility': 0.0,
u'rating_versatility_weighted': 0.0,
u'review_count': 0,
u'tag': [u'flow rate',
u'operant conditioning',
u'packed bed reactor',
u'immobilized enzyme',
u'specific activity'],
u'title': u'Development of a stable continuous flow immobilized enzyme reactor for the hydrolysis of inulin',
u'userAvg': 0.0,
u'user_id': None,
u'venue_name': u'Journal of Industrial Microbiology & Biotechnology',
u'views_count': 0,
u'volume': None},
u'_type': u'listing'},
{u'_id': u'7521A721',
u'_index': u'scibase_listings',
u'_score': 1.0,
u'_source': {u'authors': [{u'author_id': u'7FF872BC',
u'author_name': u'barbara eileen ryan'}],
u'deleted': 0,
u'description': None,
u'doi': u'',
u'is_valid': 1,
u'issue': None,
u'journal': u'The American Historical Review',
u'link': None,
u'meta_description': None,
u'meta_keywords': None,
u'normalized_venue_name': u'american historical review',
u'pages': None,
u'parent_keywords': [u'Social science',
u'Politics',
u'Sociology',
u'Law'],
u'pub_date': u'1992-01-01 00:00:00',
u'pubtype': None,
u'rating_avg_weighted': 0,
u'rating_clarity': 0.0,
u'rating_clarity_weighted': 0.0,
u'rating_innovation': 0.0,
u'rating_innovation_weighted': 0.0,
u'rating_num_weighted': 0,
u'rating_reproducability': 0,
u'rating_reproducibility_weighted': 0.0,
u'rating_versatility': 0.0,
u'rating_versatility_weighted': 0.0,
u'review_count': 0,
u'tag': [u'social movements'],
u'title': u"Feminism and the women's movement : dynamics of change in social movement ideology, and activism",
u'userAvg': 0.0,
u'user_id': None,
u'venue_name': u'The American Historical Review',
u'views_count': 0,
u'volume': None},
u'_type': u'listing'},
{u'_id': u'7DAEB9A4',
u'_index': u'scibase_listings',
u'_score': 1.0,
u'_source': {u'authors': [{u'author_id': u'0299B8E9',
u'author_name': u'fraser j harbutt'}],
u'deleted': 0,
u'description': None,
u'doi': u'',
u'is_valid': 1,
u'issue': None,
u'journal': u'The American Historical Review',
u'link': None,
u'meta_description': None,
u'meta_keywords': None,
u'normalized_venue_name': u'american historical review',
u'pages': None,
u'parent_keywords': [u'Superconductivity',
u'Nuclear fusion',
u'Geology',
u'Chemistry',
u'Metallurgy'],
u'pub_date': u'1988-01-01 00:00:00',
u'pubtype': None,
u'rating_avg_weighted': 0,
u'rating_clarity': 0.0,
u'rating_clarity_weighted': 0.0,
u'rating_innovation': 0.0,
u'rating_innovation_weighted': 0.0,
u'rating_num_weighted': 0,
u'rating_reproducability': 0,
u'rating_reproducibility_weighted': 0.0,
u'rating_versatility': 0.0,
u'rating_versatility_weighted': 0.0,
u'review_count': 0,
u'tag': [u'iron'],
u'title': u'The iron curtain : Churchill, America, and the origins of the Cold War',
u'userAvg': 0.0,
u'user_id': None,
u'venue_name': u'The American Historical Review',
u'views_count': 0,
u'volume': None},
u'_type': u'listing'},
{u'_id': u'7B3236C5',
u'_index': u'scibase_listings',
u'_score': 1.0,
u'_source': {u'authors': [{u'author_id': u'7DAB7B72',
u'author_name': u'richard m freeland'}],
u'deleted': 0,
u'description': None,
u'doi': u'',
u'is_valid': 1,
u'issue': None,
u'journal': u'The American Historical Review',
u'link': None,
u'meta_description': None,
u'meta_keywords': None,
u'normalized_venue_name': u'american historical review',
u'pages': None,
u'parent_keywords': [u'Political Science', u'Economics'],
u'pub_date': u'1985-01-01 00:00:00',
u'pubtype': None,
u'rating_avg_weighted': 0,
u'rating_clarity': 0.0,
u'rating_clarity_weighted': 0.0,
u'rating_innovation': 0.0,
u'rating_innovation_weighted': 0.0,
u'rating_num_weighted': 0,
u'rating_reproducability': 0,
u'rating_reproducibility_weighted': 0.0,
u'rating_versatility': 0.0,
u'rating_versatility_weighted': 0.0,
u'review_count': 0,
u'tag': [u'foreign policy'],
u'title': u'The Truman Doctrine and the origins of McCarthyism : foreign policy, domestic politics, and internal security, 1946-1948',
u'userAvg': 0.0,
u'user_id': None,
u'venue_name': u'The American Historical Review',
u'views_count': 0,
u'volume': None},
u'_type': u'listing'}],
u'max_score': 1.0,
u'total': 36429433},
u'timed_out': False,
u'took': 170}
Run Code Online (Sandbox Code Playgroud)
Mar*_*ers 21
在大熊猫的例子中(下面)括号是什么意思?是否有一个逻辑可以跟随[]更深入.
除了选定的行之外,其中的每个元素['state', 'shortname', ['info', 'governor']]
都是要包含的元素的路径.该参数设置应该生产什么行,而第二个参数补充说,将包含这些行的元数据.'counties'
每个都是路径,列表是嵌套结构.在这个例子中输出,您看到的相应值state
,shortname
和info.governor
列.
在您的示例JSON中,有几个嵌套列表可以使用第一个参数进行提升,就像'counties'
示例中所做的那样.该数据结构中唯一的例子是嵌套'authors'
密钥; 您必须提取每个['_source', 'authors']
路径,之后您可以从父对象添加其他键以扩充这些行:
>>> json_normalize(raw, [['_source', 'authors']], ['_id', ['_source', 'journal'], ['_source', 'title']])
affiliations author_id author_name _id \
0 NaN 166468F4 a bowdoin van riper 7FDFEB02
1 NaN 81070854 jeffrey h schwartz 7FDFEB02
2 [Pennsylvania State University] 7E15BDFA roger l geiger 7538108B
_source.journal \
0 The American Historical Review
1 The American Historical Review
2 The American Historical Review
_source.title
0 Men Among the Mammoths: Victorian Science and ...
1 Men Among the Mammoths: Victorian Science and ...
2 Elizabeth Popp Berman. Creating the Market Uni...
Run Code Online (Sandbox Code Playgroud)
因此,这是作者的数据框,为每个作者添加了元数据(_id
值,期刊名称和文章标题).
注意第一个参数的路径; 如果要列出嵌套路径,则需要提供路径列表(即使它只是一条路径); 只需['_source', 'authors']
查找两个行源,每个源都是一个简单的顶级名称.
然后第二个参数_id
从最外面的对象中提取键,但标题和日志名称是list
路径,因为它们也是嵌套的.
您还可以查看库flatten_json,它不需要像json_normalize中那样编写列层次结构:
from flatten_json import flatten
data = d['hits']['hits']
dict_flattened = (flatten(record, '.') for record in data)
df = pd.DataFrame(dict_flattened)
print(df)
Run Code Online (Sandbox Code Playgroud)
参见https://github.com/amirziai/flatten。
归档时间: |
|
查看次数: |
17464 次 |
最近记录: |