按 r 中的连续值分组

els*_*sie 3 r dplyr

我有一个来自支持票务系统的数据集,该系统记录了代理在分类和响应客户请求时所做的每次点击。系统为每次点击分配一个新的 hist_id,但代理将点击多个字段,触发表中的几行,他们认为这是一次“交互”。

我的目标是通过对每个组中的第一个和最后一个 modify_time 值进行差异计算来计算每个交互的处理时间。

我目前陷入困境,因为代理将在一天内与案例进行多次交互。

这是一个示例数据框:

hist_id <- c(1234, 2345, 3456, 4567, 5678, 6789, 7890)
case_id <- c(1, 1, 1, 1, 1, 1, 1)
agent_name <- c("John", "John", "John", "Paul", "Paul", "John", "John")
modify_time <- as.POSIXct(c(1510095120, 1510095180, 1510095240, 1510098600, 1510098720, 1510135200, 1510135320), origin = "1970-01-01")
df <- data.frame(hist_id, case_id, agent_name, modify_time)
Run Code Online (Sandbox Code Playgroud)

正如预期的那样,在 case_id 和 agent_name 上使用 group by 对符合条件的所有行进行分组:

df %>% group_by(case_id, agent_name) %>% mutate(first = first(modify_time), last = last(modify_time), diff = min(difftime(last, first)))
Run Code Online (Sandbox Code Playgroud)

这给了我这个:

    # A tibble: 7 x 7
# Groups:   case_id, agent_name [2]
  hist_id case_id agent_name         modify_time               first                last       diff
    <dbl>   <dbl>     <fctr>              <dttm>              <dttm>              <dttm>     <time>
1    1234       1       John 2017-11-07 16:52:00 2017-11-07 16:52:00 2017-11-08 04:02:00 40200 secs
2    2345       1       John 2017-11-07 16:53:00 2017-11-07 16:52:00 2017-11-08 04:02:00 40200 secs
3    3456       1       John 2017-11-07 16:54:00 2017-11-07 16:52:00 2017-11-08 04:02:00 40200 secs
4    4567       1       Paul 2017-11-07 17:50:00 2017-11-07 17:50:00 2017-11-07 17:52:00   120 secs
5    5678       1       Paul 2017-11-07 17:52:00 2017-11-07 17:50:00 2017-11-07 17:52:00   120 secs
6    6789       1       John 2017-11-08 04:00:00 2017-11-07 16:52:00 2017-11-08 04:02:00 40200 secs
7    7890       1       John 2017-11-08 04:02:00 2017-11-07 16:52:00 2017-11-08 04:02:00 40200 secs
Run Code Online (Sandbox Code Playgroud)

返回 John 的 true first 和 last modify_times 的地方。但是,我需要将 case_id 和 agent_name 的连续匹配分组,以便考虑 Paul 的交互。所以这里记录了三个交互:一个来自约翰,一个来自保罗,第二个来自约翰。

所需的输出将是这样的:

    # A tibble: 7 x 7
# Groups:   case_id, agent_name [2]
  hist_id case_id agent_name         modify_time               first                last       diff
    <dbl>   <dbl>     <fctr>              <dttm>              <dttm>              <dttm>     <time>
1    1234       1       John 2017-11-07 16:52:00 2017-11-07 16:52:00 2017-11-07 16:54:00 120 secs
2    2345       1       John 2017-11-07 16:53:00 2017-11-07 16:52:00 2017-11-07 16:54:00 120 secs
3    3456       1       John 2017-11-07 16:54:00 2017-11-07 16:52:00 2017-11-07 16:54:00 120 secs
4    4567       1       Paul 2017-11-07 17:50:00 2017-11-07 17:50:00 2017-11-07 17:52:00 120 secs
5    5678       1       Paul 2017-11-07 17:52:00 2017-11-07 17:50:00 2017-11-07 17:52:00 120 secs
6    6789       1       John 2017-11-08 04:00:00 2017-11-08 04:00:00 2017-11-08 04:02:00 120 secs
7    7890       1       John 2017-11-08 04:02:00 2017-11-08 04:00:00 2017-11-08 04:02:00 120 secs
Run Code Online (Sandbox Code Playgroud)

lee*_*sej 7

这是一种 tidyverse 方法,它按processing cluster identity、 以及case_id和对组进行分区agent_name

将所有的点击按顺序排列,每次hist_id序列遇到转换到新的时都会生成一个新的 id 标志agent_namecumsum这些标志为prcl_id每个案例、每个代理、每个集群处理块生成一个唯一的标志。有了所有三个 id,您就可以在所需的分区内运行您选择的突变。

df %>% 
    arrange(hist_id) %>%  # to ensure there are no wrinkles
    mutate(ag_chg_flg = ifelse(lag(agent_name) != agent_name, 1, 0) %>%
               coalesce(0) # to reassign the first click in a case_id to 0 (from NA)
           ) %>% 
    group_by(case_id, agent_name) %>%  
    mutate(prcl_id = cumsum(ag_chg_flg) + 1) %>%  # generate the proc_clst_id (starting at 1) 
    group_by(case_id, agent_name, prcl_id) %>%  # group by the complete composite id
    mutate(first = first(modify_time),
           last = last(modify_time),
           diff = min(difftime(last, first))
           )
Run Code Online (Sandbox Code Playgroud)

这让你:

# A tibble: 7 x 9
# Groups:   case_id, agent_name, prcl_id [3]
  hist_id case_id agent_name         modify_time ag_chg_flg prcl_id               first                last   diff
    <dbl>   <dbl>     <fctr>              <dttm>      <dbl>   <dbl>              <dttm>              <dttm> <time>
1    1234       1       John 2017-11-07 14:52:00          0       1 2017-11-07 14:52:00 2017-11-07 14:54:00 2 mins
2    2345       1       John 2017-11-07 14:53:00          0       1 2017-11-07 14:52:00 2017-11-07 14:54:00 2 mins
3    3456       1       John 2017-11-07 14:54:00          0       1 2017-11-07 14:52:00 2017-11-07 14:54:00 2 mins
4    4567       1       Paul 2017-11-07 15:50:00          1       2 2017-11-07 15:50:00 2017-11-07 15:52:00 2 mins
5    5678       1       Paul 2017-11-07 15:52:00          0       2 2017-11-07 15:50:00 2017-11-07 15:52:00 2 mins
6    6789       1       John 2017-11-08 02:00:00          1       2 2017-11-08 02:00:00 2017-11-08 02:02:00 2 mins
7    7890       1       John 2017-11-08 02:02:00          0       2 2017-11-08 02:00:00 2017-11-08 02:02:00 2 mins
Run Code Online (Sandbox Code Playgroud)