在熊猫中分解一列字符串

tus*_*yer 3 python dataframe pandas categorical-data

如问题所述,我有一个df_original很大的数据框,但看起来像:

        ID    Count   Column 2   Column 3  Column 4
RowX    1      234.     255.       yes.      452
RowY    1      123.     135.       no.       342
RowW    1      234.     235.       yes.      645
RowJ    1      123.     115.       no.       342
RowA    1      234.     285.       yes.      233
RowR    1      123.     165.       no.       342
RowX    2      234.     255.       yes.      234
RowY    2      123.     135.       yes.      342
RowW    2      234.     235.       yes.      233
RowJ    2      123.     115.       yes.      342
RowA    2      234.     285.       yes.      312
RowR    2      123.     165.       no.       342
.
.
.
RowX    1233   234.     255.       yes.      133
RowY    1233   123.     135.       no.       342
RowW    1233   234.     235.       no.       253
RowJ    1233   123.     115.       yes.      342
RowA    1233   234.     285.       yes.      645
RowR    1233   123.     165.       no.       342
Run Code Online (Sandbox Code Playgroud)

我试图摆脱文本数据,并将其替换为预定义的数值等效项。例如,在这种情况下,我想分别用或替换Column3yesno值。有没有办法无需我手动输入并更改值?10

cs9*_*s95 6

v

RowX    yes
RowY     no
RowW    yes
RowJ     no
RowA    yes
RowR     no
RowX    yes
RowY    yes
RowW    yes
RowJ    yes
RowA    yes
RowR     no
Name: Column 3, dtype: object
Run Code Online (Sandbox Code Playgroud)

pd.factorize

1 - pd.factorize(v)[0]
array([1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0])
Run Code Online (Sandbox Code Playgroud)

np.where

np.where(v == 'yes', 1, 0)
array([1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0])
Run Code Online (Sandbox Code Playgroud)

pd.Categorical/astype('category')

pd.Categorical(v).codes
array([1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0], dtype=int8)
Run Code Online (Sandbox Code Playgroud)
v.astype('category').cat.codes

RowX    1
RowY    0
RowW    1
RowJ    0
RowA    1
RowR    0
RowX    1
RowY    1
RowW    1
RowJ    1
RowA    1
RowR    0
dtype: int8
Run Code Online (Sandbox Code Playgroud)

pd.Series.replace

v.replace({'yes' : 1, 'no' : 0})

RowX    1
RowY    0
RowW    1
RowJ    0
RowA    1
RowR    0
RowX    1
RowY    1
RowW    1
RowJ    1
RowA    1
RowR    0
Name: Column 3, dtype: int64
Run Code Online (Sandbox Code Playgroud)

上面的一个有趣的通用版本:

v.replace({r'^(?!yes).*$' : 0}, regex=True).astype(bool).astype(int)

RowX    1
RowY    0
RowW    1
RowJ    0
RowA    1
RowR    0
RowX    1
RowY    1
RowW    1
RowJ    1
RowA    1
RowR    0
Name: Column 3, dtype: int64
Run Code Online (Sandbox Code Playgroud)

一切都不"yes"0