Car*_*Ben 8 sql-server arrays json
我目前能够使用SQL Server的"OPENJSON WITH(..."语法解析大部分JSON文件.但是,这个特定的文件包含我不知道如何处理的嵌套数组.
我读过的许多例子都将JSON引用为变量.在这种情况下,我正在调用一个文件:
select DEV_JSON.*
from OPENROWSET
(BULK 'C:\Users\Myuser\Documents\JSON_extract.json', SINGLE_CLOB) as my_datafile
CROSS APPLY OPENJSON(BulkColumn)
WITH
(DOC_ID varchar(100) '$.doc._id',
DOC_REV varchar(45) '$.doc._rev',
DELY_APPL_NAME varchar(20) '$.doc.delivery.application',
DELY_SENT_BY varchar(25) '$.doc.delivery.sender.id',
DELY_SENT_TYPO varchar(20) '$.doc.delivery.sender.type',
.....
....
...
..) as DEV_JSON
Run Code Online (Sandbox Code Playgroud)
其中一个属性包含嵌套数组.下面我复制了我的JSON的前5个属性,以及嵌套的"recipients"数组.
如何构建我的SQL来解析这一部分?
"doc": {
"_id": "049d4e4030afcdeefedaa90f640f91d4a2be93d7-bd_abcxyz@somemail.com",
"_rev": "3-e119db13dae8d50ae0c4579ba9c87fc9",
"delivery": {
"application": "App_XYZ",
"sender": {
"id": "MABarrera@yahoo.com",
"type": "user"
},
"recipients": [{
"type": "email",
"recipient": "\"Artzer, Daniel J\" <DJArtzer@emailaddr.com>",
"sentTS": "2017-10-18T13:04:00.133Z"
},
{
"type": "email",
"recipient": "\"Higgins, Laura L\" <LLHiggins@emailaddr.com>",
"sentTS": "2017-10-18T13:04:00.133Z"
},
{
"type": "email",
"recipient": "\"Friedman, Brian\" <BFriedman@emailaddr.com>",
"sentTS": "2017-10-18T13:04:00.133Z"
},
{
"type": "email",
"recipient": "\"Garcia, Charlie M\" <CMGarcia@emailaddr.com>",
"sentTS": "2017-10-18T13:04:00.133Z"
}
]
},
Run Code Online (Sandbox Code Playgroud)
dig*_*ron 12
我遇到了同样的问题,最后我用多个CROSS APPLY子句来解决它.
这是我的JSON的一个例子:
DECLARE @PermsJSON NVARCHAR(MAX) =
N'[{
"AppId": 1,
"Perms":
[{
"Permission": ["AA", "BB"],
"PermissionTypeID": 2
},
{
"Permission": ["10"],
"PermissionTypeID": 1
}]
},
{
"AppId": 2,
"Perms":
[{
"Permission": ["IM", "NM"],
"PermissionTypeID": 2
},
{
"Permission": ["42"],
"PermissionTypeID": 1
}]
}]';
Run Code Online (Sandbox Code Playgroud)
然后我可以使用以下查询解析它:
SELECT
a.AppId
,[Permission] = c.Value
,b.PermissionTypeID
FROM
OPENJSON(@PermsJSON)
WITH
(
AppId INT N'$.AppId'
,Perms NVARCHAR(MAX) AS JSON
) AS a
CROSS APPLY
OPENJSON(a.Perms)
WITH
(
PermissionTypeID INT
,[Permission] NVARCHAR(MAX) AS JSON
) AS b
CROSS APPLY OPENJSON(b.Permission) AS c;
Run Code Online (Sandbox Code Playgroud)
结果如下:
AppId Permission PermissionTypeID
1 AA 2
1 BB 2
1 10 1
2 IM 2
2 NM 2
2 42 1
Run Code Online (Sandbox Code Playgroud)
之后MUCH搜索我终于发现了解决这个问题的。我只需将嵌套数组作为另一个 JSON 列包含在我的查询中,例如:
WITH
(DOC_ID varchar(100) '$.doc._id',
DOC_REV varchar(45) '$.doc._rev',
DELY_APPL_NAME varchar(20) '$.doc.delivery.application',
DELY_SENT_BY varchar(25) '$.doc.delivery.sender.id',
DELY_SENT_TYPO varchar(20) '$.doc.delivery.sender.type',
RECIPS nvarchar(max) '$.doc.delivery.recipients' as JSON,
PAYLOAD_START_TIME varchar(30) '$.doc.payload.startTS',
....
...
..
) as my_query
Run Code Online (Sandbox Code Playgroud)
因此,我最终得到每个 JSON 文档的一条记录,(在本例中)包含一个包含 JSON 文本的 varchar 列。
接下来,我可以在此列上运行单独的查询来解析 JSON 并创建与父级关联的“子表”。