Max*_*wer 2 python pipeline machine-learning scikit-learn
经过大量阅读和检查不同verbose
参数设置下的pipeline.fit()操作后,我仍然很困惑为什么我的管道会多次访问某个步骤的transform
方法。
下面是一个简单的例子pipeline
,fit
有GridSearchCV
使用3倍交叉验证,但PARAM栅与只有一组hyperparams的。所以我预计三个运行通过管道。双方step1
并step2
已fit
叫了三次,符合市场预期,但每一步transform
叫了好几次。为什么是这样?下面的最小代码示例和日志输出。
# library imports
import pandas as pd
from sklearn import datasets
from sklearn.model_selection import KFold
from sklearn.linear_model import LogisticRegression
from sklearn.base import TransformerMixin, BaseEstimator
from sklearn.pipeline import Pipeline
# Load toy data
iris = datasets.load_iris()
X = pd.DataFrame(iris.data, columns = iris.feature_names)
y = pd.Series(iris.target, name='y')
# Define a couple trivial pipeline steps
class mult_everything_by(TransformerMixin, BaseEstimator):
def __init__(self, multiplier=2):
self.multiplier = multiplier
def fit(self, X, y=None):
print "Fitting step 1"
return self
def transform(self, X, y=None):
print "Transforming step 1"
return X* self.multiplier
class do_nothing(TransformerMixin, BaseEstimator):
def __init__(self, meaningless_param = 'hello'):
self.meaningless_param=meaningless_param
def fit(self, X, y=None):
print "Fitting step 2"
return self
def transform(self, X, y=None):
print "Transforming step 2"
return X
# Define the steps in our Pipeline
pipeline_steps = [('step1', mult_everything_by()),
('step2', do_nothing()),
('classifier', LogisticRegression()),
]
pipeline = Pipeline(pipeline_steps)
# To keep this example super minimal, this param grid only has one set
# of hyperparams, so we are only fitting one type of model
param_grid = {'step1__multiplier': [2], #,3],
'step2__meaningless_param': ['hello'] #, 'howdy', 'goodbye']
}
# Define model-search process/object
# (fit one model, 3-fits due to 3-fold cross-validation)
cv_model_search = GridSearchCV(pipeline,
param_grid,
cv = KFold(3),
refit=False,
verbose = 0)
# Fit all (1) models defined in our model-search object
cv_model_search.fit(X,y)
Run Code Online (Sandbox Code Playgroud)
输出:
Fitting step 1
Transforming step 1
Fitting step 2
Transforming step 2
Transforming step 1
Transforming step 2
Transforming step 1
Transforming step 2
Fitting step 1
Transforming step 1
Fitting step 2
Transforming step 2
Transforming step 1
Transforming step 2
Transforming step 1
Transforming step 2
Fitting step 1
Transforming step 1
Fitting step 2
Transforming step 2
Transforming step 1
Transforming step 2
Transforming step 1
Transforming step 2
Run Code Online (Sandbox Code Playgroud)
因为您使用了GridSearchCV
with cv = KFold(3)
which 将对您的模型进行交叉验证。这是发生的事情:
fit step1, transform step1, fit step2, transform step2
。编辑现在是评分部分。在这里,我们不想再次重新安装零件。我们将使用在之前的拟合过程中学到的信息。所以管道的每一部分只会调用transform()。这就是原因Transforming step 1, Transforming step 2
。
它显示了两次,因为在 GridSearchCV 中,默认行为是计算训练和测试数据的分数。这种行为是由 产生的return_train_score
。您可以设置return_train_score=False
并且只会看到它们一次。
转换后的测试数据将用于预测分类器的输出。(同样,没有拟合测试,只有预测或转换)。
(KFold(3))
。现在看看你的参数:
param_grid = {'step1__multiplier': [2], #,3], 'step2__meaningless_param': ['hello'] #, 'howdy', 'goodbye'] }
扩展时,它变成了唯一的组合,即:
组合 1 : 'step1__multiplier'=2, 'step2__meaningless_param' = 'hello'
如果您提供了更多选项,您已经评论了更多组合,例如:
组合 1 : 'step1__multiplier'=2, 'step2__meaningless_param' = 'hello'
组合 2 : 'step1__multiplier'=3, 'step2__meaningless_param' = 'hello'
组合 3 : 'step1__multiplier'=2, 'step2__meaningless_param' = 'howdy'
等等..
将针对每种可能的组合重复步骤 1-7。
但你一直保持着refit=False
。所以模型将不会再次拟合。否则你会看到另一个输出
拟合步骤 1 变换步骤 1 拟合步骤 2 变换步骤 2
希望这可以解决这个问题。随时询问更多信息。
归档时间: |
|
查看次数: |
1437 次 |
最近记录: |