Jas*_*n S 6 python arrays sorting numpy
numpy.argsort 文档状态
返回:
index_array : ndarray, int 沿指定轴对 a 进行排序的索引数组。如果 a 是一维的,则a[index_array]产生一个已排序的 a。
如何应用numpy.argsort多维数组的结果来取回已排序的数组?(不仅仅是一维或二维数组;它可能是一个 N 维数组,其中 N 仅在运行时已知)
>>> import numpy as np
>>> np.random.seed(123)
>>> A = np.random.randn(3,2)
>>> A
array([[-1.0856306 , 0.99734545],
[ 0.2829785 , -1.50629471],
[-0.57860025, 1.65143654]])
>>> i=np.argsort(A,axis=-1)
>>> A[i]
array([[[-1.0856306 , 0.99734545],
[ 0.2829785 , -1.50629471]],
[[ 0.2829785 , -1.50629471],
[-1.0856306 , 0.99734545]],
[[-1.0856306 , 0.99734545],
[ 0.2829785 , -1.50629471]]])
Run Code Online (Sandbox Code Playgroud)
对我来说,这不仅仅是使用的问题sort();我有另一个数组B,我想B使用np.argsort(A)沿适当轴的结果进行排序。考虑以下示例:
>>> A = np.array([[3,2,1],[4,0,6]])
>>> B = np.array([[3,1,4],[1,5,9]])
>>> i = np.argsort(A,axis=-1)
>>> BsortA = ???
# should result in [[4,1,3],[5,1,9]]
# so that corresponding elements of B and sort(A) stay together
Run Code Online (Sandbox Code Playgroud)
看起来这个功能已经是 numpy 中的一个增强请求。
该numpy的问题#8708具有take_along_axis的样本实现,做什么,我需要; 我不确定它对于大型阵列是否有效,但它似乎有效。
def take_along_axis(arr, ind, axis):
"""
... here means a "pack" of dimensions, possibly empty
arr: array_like of shape (A..., M, B...)
source array
ind: array_like of shape (A..., K..., B...)
indices to take along each 1d slice of `arr`
axis: int
index of the axis with dimension M
out: array_like of shape (A..., K..., B...)
out[a..., k..., b...] = arr[a..., inds[a..., k..., b...], b...]
"""
if axis < 0:
if axis >= -arr.ndim:
axis += arr.ndim
else:
raise IndexError('axis out of range')
ind_shape = (1,) * ind.ndim
ins_ndim = ind.ndim - (arr.ndim - 1) #inserted dimensions
dest_dims = list(range(axis)) + [None] + list(range(axis+ins_ndim, ind.ndim))
# could also call np.ix_ here with some dummy arguments, then throw those results away
inds = []
for dim, n in zip(dest_dims, arr.shape):
if dim is None:
inds.append(ind)
else:
ind_shape_dim = ind_shape[:dim] + (-1,) + ind_shape[dim+1:]
inds.append(np.arange(n).reshape(ind_shape_dim))
return arr[tuple(inds)]
Run Code Online (Sandbox Code Playgroud)
这产生
>>> A = np.array([[3,2,1],[4,0,6]])
>>> B = np.array([[3,1,4],[1,5,9]])
>>> i = A.argsort(axis=-1)
>>> take_along_axis(A,i,axis=-1)
array([[1, 2, 3],
[0, 4, 6]])
>>> take_along_axis(B,i,axis=-1)
array([[4, 1, 3],
[5, 1, 9]])
Run Code Online (Sandbox Code Playgroud)