Ali*_*tad 9 python deep-learning keras keras-2
我一直致力于我的项目深度学习语言检测,这是一个具有这些层的网络,可以从16种编程语言中识别:
这是生成网络的代码:
# Setting up the model
graph_in = Input(shape=(sequence_length, number_of_quantised_characters))
convs = []
for i in range(0, len(filter_sizes)):
conv = Conv1D(filters=num_filters,
kernel_size=filter_sizes[i],
padding='valid',
activation='relu',
strides=1)(graph_in)
pool = MaxPooling1D(pool_size=pooling_sizes[i])(conv)
flatten = Flatten()(pool)
convs.append(flatten)
if len(filter_sizes)>1:
out = Concatenate()(convs)
else:
out = convs[0]
graph = Model(inputs=graph_in, outputs=out)
# main sequential model
model = Sequential()
model.add(Dropout(dropout_prob[0], input_shape=(sequence_length, number_of_quantised_characters)))
model.add(graph)
model.add(Dense(hidden_dims))
model.add(Dropout(dropout_prob[1]))
model.add(Dense(number_of_classes))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adadelta', metrics=['accuracy'])
Run Code Online (Sandbox Code Playgroud)
所以我的最后一个语言类是SQL,在测试阶段,它永远无法正确预测SQL,它的得分为0%.我认为这是由于SQL样本质量差(实际上它们很差)所以我删除了这个类并开始训练15个类.令我惊讶的是,现在F#文件的检测率为0%,而F#是删除SQL后的最后一个类(即最后一个位置为1且其余为0的单热矢量).现在,如果一个训练有16的网络用于对抗15,那么它将获得98.5%的非常高的成功率.
我使用的代码非常简单,主要在defs.py和data_helper.py中提供
以下是针对16个类测试的16个课程的网络训练结果:
Final result: 14827/16016 (0.925761738262)
xml: 995/1001 (0.994005994006)
fsharp: 974/1001 (0.973026973027)
clojure: 993/1001 (0.992007992008)
java: 996/1001 (0.995004995005)
scala: 990/1001 (0.989010989011)
python: 983/1001 (0.982017982018)
sql: 0/1001 (0.0)
js: 991/1001 (0.99000999001)
cpp: 988/1001 (0.987012987013)
css: 987/1001 (0.986013986014)
csharp: 994/1001 (0.993006993007)
go: 989/1001 (0.988011988012)
php: 998/1001 (0.997002997003)
ruby: 995/1001 (0.994005994006)
powershell: 992/1001 (0.991008991009)
bash: 962/1001 (0.961038961039)
Run Code Online (Sandbox Code Playgroud)
这是同一个网络(训练为16)对15个课程的结果:
Final result: 14827/15015 (0.987479187479)
xml: 995/1001 (0.994005994006)
fsharp: 974/1001 (0.973026973027)
clojure: 993/1001 (0.992007992008)
java: 996/1001 (0.995004995005)
scala: 990/1001 (0.989010989011)
python: 983/1001 (0.982017982018)
js: 991/1001 (0.99000999001)
cpp: 988/1001 (0.987012987013)
css: 987/1001 (0.986013986014)
csharp: 994/1001 (0.993006993007)
go: 989/1001 (0.988011988012)
php: 998/1001 (0.997002997003)
ruby: 995/1001 (0.994005994006)
powershell: 992/1001 (0.991008991009)
bash: 962/1001 (0.961038961039)
Run Code Online (Sandbox Code Playgroud)
有没有人见过这个?我怎么能绕过它呢?
Yu-*_*ang 16
TL; DR:问题是您的数据在被分成训练和验证集之前不会被洗牌.因此,在训练期间,属于"sql"类的所有样本都在验证集中.如果没有在该类中给出样本,您的模型将不会学习预测最后一个类.
在get_input_and_labels(),首先加载类0的文件,然后加载类1,依此类推.既然你设置了n_max_files = 2000,就意味着
Y将是0级("go")不幸的是,Keras在将数据拆分为训练和验证集之前不会对数据进行混洗.因为validation_split在代码中设置为0.1,所以最后3000个样本(包含所有"sql"样本)将在验证集中.
如果设置validation_split为更高的值(例如,0.2),您将看到更多的类得分为0%:
Final result: 12426/16016 (0.7758491508491508)
go: 926/1001 (0.9250749250749251)
csharp: 966/1001 (0.965034965034965)
java: 973/1001 (0.972027972027972)
js: 929/1001 (0.9280719280719281)
cpp: 986/1001 (0.985014985014985)
ruby: 942/1001 (0.9410589410589411)
powershell: 981/1001 (0.98001998001998)
bash: 882/1001 (0.8811188811188811)
php: 977/1001 (0.9760239760239761)
css: 988/1001 (0.987012987012987)
xml: 994/1001 (0.993006993006993)
python: 986/1001 (0.985014985014985)
scala: 896/1001 (0.8951048951048951)
clojure: 0/1001 (0.0)
fsharp: 0/1001 (0.0)
sql: 0/1001 (0.0)
Run Code Online (Sandbox Code Playgroud)
如果在加载后对数据进行洗牌,则可以解决该问题.看来你已经在洗牌数据了:
# Shuffle data
shuffle_indices = np.random.permutation(np.arange(len(y)))
x_shuffled = x[shuffle_indices]
y_shuffled = y[shuffle_indices].argmax(axis=1)
Run Code Online (Sandbox Code Playgroud)
但是,如果你适合的模型,你通过了原有的x和y以fit()代替x_shuffled和y_shuffled.如果您将该行更改为:
model.fit(x_shuffled, y_shuffled, batch_size=batch_size,
epochs=num_epochs, validation_split=val_split, verbose=1)
Run Code Online (Sandbox Code Playgroud)
测试输出会变得更合理:
Final result: 15248/16016 (0.952047952047952)
go: 865/1001 (0.8641358641358642)
csharp: 986/1001 (0.985014985014985)
java: 977/1001 (0.9760239760239761)
js: 953/1001 (0.952047952047952)
cpp: 974/1001 (0.973026973026973)
ruby: 985/1001 (0.984015984015984)
powershell: 974/1001 (0.973026973026973)
bash: 942/1001 (0.9410589410589411)
php: 979/1001 (0.978021978021978)
css: 965/1001 (0.964035964035964)
xml: 988/1001 (0.987012987012987)
python: 857/1001 (0.8561438561438561)
scala: 955/1001 (0.954045954045954)
clojure: 985/1001 (0.984015984015984)
fsharp: 950/1001 (0.949050949050949)
sql: 913/1001 (0.9120879120879121)
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
488 次 |
| 最近记录: |