Mou*_*oud 11 scala apache-spark apache-spark-sql apache-spark-mllib
我使用Spark Scala来计算Dataframe行之间的余弦相似度.
数据帧格式如下
root
|-- SKU: double (nullable = true)
|-- Features: vector (nullable = true)
Run Code Online (Sandbox Code Playgroud)
以下数据框的示例
+-------+--------------------+
| SKU| Features|
+-------+--------------------+
| 9970.0|[4.7143,0.0,5.785...|
|19676.0|[5.5,0.0,6.4286,4...|
| 3296.0|[4.7143,1.4286,6....|
|13658.0|[6.2857,0.7143,4....|
| 1.0|[4.2308,0.7692,5....|
| 513.0|[3.0,0.0,4.9091,5...|
| 3753.0|[5.9231,0.0,4.846...|
|14967.0|[4.5833,0.8333,5....|
| 2803.0|[4.2308,0.0,4.846...|
|11879.0|[3.1429,0.0,4.5,4...|
+-------+--------------------+
Run Code Online (Sandbox Code Playgroud)
我试图转置矩阵并检查以下提到的链接.Apache Spark Python Cosine与DataFrames 的相似性,计算 - 余弦相似性 - 通过-text-into-vector-using-tf-idf但我相信有一个更好的解决方案
我尝试了下面的示例代码
val irm = new IndexedRowMatrix(inClusters.rdd.map {
case (v,i:Vector) => IndexedRow(v, i)
}).toCoordinateMatrix.transpose.toRowMatrix.columnSimilarities
Run Code Online (Sandbox Code Playgroud)
但我得到了以下错误
Error:(80, 12) constructor cannot be instantiated to expected type;
found : (T1, T2)
required: org.apache.spark.sql.Row
case (v,i:Vector) => IndexedRow(v, i)
Run Code Online (Sandbox Code Playgroud)
我检查了以下链接Apache Spark:如何从DataFrame创建矩阵?但是不能使用Scala来做到这一点
DataFrame.rddRDD[Row]不 返回RDD[(T, U)]。您必须进行图案匹配Row或直接提取有趣的部分。ml Vector与用于Datasets自火花2.0是不一样的mllib Vector由旧的API使用。您必须将其转换为可与结合使用IndexedRowMatrix。Long不是字符串。import org.apache.spark.sql.Row
val irm = new IndexedRowMatrix(inClusters.rdd.map {
Row(_, v: org.apache.spark.ml.linalg.Vector) =>
org.apache.spark.mllib.linalg.Vectors.fromML(v)
}.zipWithIndex.map { case (v, i) => IndexedRow(i, v) })
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
3732 次 |
| 最近记录: |