Pro*_*hii 5 python numpy vectorization pandas
我想编写代码的向量版本,使用 NumPy(或 Pandas)计算 Arnaud Legoux 移动平均线。你能帮我解决这个问题吗?谢谢。
非矢量版本如下所示(见下文)。
def NPALMA(pnp_array, **kwargs) :
'''
ALMA - Arnaud Legoux Moving Average,
http://www.financial-hacker.com/trend-delusion-or-reality/
https://github.com/darwinsys/Trading_Strategies/blob/master/ML/Features.py
'''
length = kwargs['length']
# just some number (6.0 is useful)
sigma = kwargs['sigma']
# sensisitivity (close to 1) or smoothness (close to 0)
offset = kwargs['offset']
asize = length - 1
m = offset * asize
s = length / sigma
dss = 2 * s * s
alma = np.zeros(pnp_array.shape)
wtd_sum = np.zeros(pnp_array.shape)
for l in range(len(pnp_array)):
if l >= asize:
for i in range(length):
im = i - m
wtd = np.exp( -(im * im) / dss)
alma[l] += pnp_array[l - length + i] * wtd
wtd_sum[l] += wtd
alma[l] = alma[l] / wtd_sum[l]
return alma
Run Code Online (Sandbox Code Playgroud)
起始方法
\n\n我们可以沿第一个轴创建滑动窗口,然后使用张量乘法与wtd求和值的范围相乘。
实现看起来像这样 -
\n\n# Get all wtd values in an array\nwtds = np.exp(-(np.arange(length) - m)**2/dss)\n\n# Get the sliding windows for input array along first axis\npnp_array3D = strided_axis0(pnp_array,len(wtds))\n\n# Initialize o/p array\nout = np.zeros(pnp_array.shape)\n\n# Get sum-reductions for the windows which don\'t need wrapping over\nout[length:] = np.tensordot(pnp_array3D,wtds,axes=((1),(0)))[:-1]\n\n# Last element of the output needed wrapping. So, do it separately.\nout[length-1] = wtds.dot(pnp_array[np.r_[-1,range(length-1)]])\n\n# Finally perform the divisions\nout /= wtds.sum()\nRun Code Online (Sandbox Code Playgroud)\n\n获取滑动窗口的函数:strided_axis0来自here.
1D卷积增强
这些与wtds值的乘法以及它们的求和基本上是沿着第一个轴的卷积。因此,我们可以使用scipy.ndimage.convolve1d沿axis=0。考虑到内存效率,这会快得多,因为我们不会创建巨大的滑动窗口。
实施将是 -
\n\nfrom scipy.ndimage import convolve1d as conv\n\navgs = conv(pnp_array, weights=wtds/wtds.sum(),axis=0, mode=\'wrap\')\nRun Code Online (Sandbox Code Playgroud)\n\n因此,out[length-1:]非零行的 与 相同avgs[:-length+1]。
如果我们使用的内核数非常小,则可能会存在一些精度差异wtds。因此,如果使用此方法,请记住这一点convolution。
运行时测试
\n\n方法 -
\n\ndef original_app(pnp_array, length, m, dss):\n alma = np.zeros(pnp_array.shape)\n wtd_sum = np.zeros(pnp_array.shape)\n\n for l in range(len(pnp_array)):\n if l >= asize:\n for i in range(length):\n im = i - m\n wtd = np.exp( -(im * im) / dss)\n alma[l] += pnp_array[l - length + i] * wtd\n wtd_sum[l] += wtd\n alma[l] = alma[l] / wtd_sum[l]\n return alma\n\ndef vectorized_app1(pnp_array, length, m, dss):\n wtds = np.exp(-(np.arange(length) - m)**2/dss)\n pnp_array3D = strided_axis0(pnp_array,len(wtds))\n out = np.zeros(pnp_array.shape)\n out[length:] = np.tensordot(pnp_array3D,wtds,axes=((1),(0)))[:-1]\n out[length-1] = wtds.dot(pnp_array[np.r_[-1,range(length-1)]])\n out /= wtds.sum()\n return out\n\ndef vectorized_app2(pnp_array, length, m, dss):\n wtds = np.exp(-(np.arange(length) - m)**2/dss)\n return conv(pnp_array, weights=wtds/wtds.sum(),axis=0, mode=\'wrap\')\nRun Code Online (Sandbox Code Playgroud)\n\n时间安排 -
\n\nIn [470]: np.random.seed(0)\n ...: m,n = 1000,100\n ...: pnp_array = np.random.rand(m,n)\n ...: \n ...: length = 6\n ...: sigma = 0.3\n ...: offset = 0.5\n ...: \n ...: asize = length - 1\n ...: m = np.floor(offset * asize)\n ...: s = length / sigma\n ...: dss = 2 * s * s\n ...: \n\nIn [471]: %timeit original_app(pnp_array, length, m, dss)\n ...: %timeit vectorized_app1(pnp_array, length, m, dss)\n ...: %timeit vectorized_app2(pnp_array, length, m, dss)\n ...: \n10 loops, best of 3: 36.1 ms per loop\n1000 loops, best of 3: 1.84 ms per loop\n1000 loops, best of 3: 684 \xc2\xb5s per loop\n\nIn [472]: np.random.seed(0)\n ...: m,n = 10000,1000 # rest same as previous one\n\nIn [473]: %timeit original_app(pnp_array, length, m, dss)\n ...: %timeit vectorized_app1(pnp_array, length, m, dss)\n ...: %timeit vectorized_app2(pnp_array, length, m, dss)\n ...: \n1 loop, best of 3: 503 ms per loop\n1 loop, best of 3: 222 ms per loop\n10 loops, best of 3: 106 ms per loop\nRun Code Online (Sandbox Code Playgroud)\n
| 归档时间: |
|
| 查看次数: |
1836 次 |
| 最近记录: |