Gow*_*n V 1 sql apache-spark-sql pyspark
我想在Spark中进行以下转换我的目标是获得输出,我希望如果我可以进行中间转换,我可以轻松获得输出。关于如何将行转换为列的任何想法都会很有帮助。
RowID Name Place
1 Gaga India,US,UK
1 Katy UK,India,Europe
1 Bey Europe
2 Gaga Null
2 Katy India,Europe
2 Bey US
3 Gaga Europe
3 Katy US
3 Bey Null
Output:
RowID Id Gaga Katy Bey
1 1 India UK Europe
1 2 US India Null
1 3 UK Europe Null
2 1 Null India US
2 2 Null Europe Null
3 1 Europe US Null
Intermediate Output:
RowID Gaga Katy Bey
1 India,US,UK UK,India,Europe Europe
2 Null India,Europe US
3 Europe US Null
Run Code Online (Sandbox Code Playgroud)
使用 Dataframe 函数和 UDF,我已经尝试过了。希望对你有帮助。
>>> from pyspark.sql import functions as F
>>> from pyspark.sql.types import IntegerType
>>> from functools import reduce
>>> from pyspark.sql import DataFrame
>>> from pyspark.sql import Window
>>> l = [(1,'Gaga','India,US,UK'),(1,'Katy','UK,India,Europe'),(1,'Bey','Europe'),(2,'Gaga',None),(2,'Katy','India,Europe'),(2,'Bey','US'),(3,'Gaga','Europe'),
... (3,'Katy','US'),(3,'Bey',None)]
>>> df = spark.createDataFrame(l,['RowID','Name','Place'])
>>> df = df.withColumn('Placelist',F.split(df.Place,','))
>>> df.show()
+-----+----+---------------+-------------------+
|RowID|Name| Place| Placelist|
+-----+----+---------------+-------------------+
| 1|Gaga| India,US,UK| [India, US, UK]|
| 1|Katy|UK,India,Europe|[UK, India, Europe]|
| 1| Bey| Europe| [Europe]|
| 2|Gaga| null| null|
| 2|Katy| India,Europe| [India, Europe]|
| 2| Bey| US| [US]|
| 3|Gaga| Europe| [Europe]|
| 3|Katy| US| [US]|
| 3| Bey| null| null|
+-----+----+---------------+-------------------+
>>> udf1 = F.udf(lambda x : len(x) if x is not None else 0,IntegerType())
>>> maxlen = df.agg(F.max(udf1('Placelist'))).first()[0]
>>> df1 = df.groupby('RowID').pivot('Name').agg(F.first('Placelist'))
>>> df1.show()
+-----+--------+---------------+-------------------+
|RowID| Bey| Gaga| Katy|
+-----+--------+---------------+-------------------+
| 1|[Europe]|[India, US, UK]|[UK, India, Europe]|
| 3| null| [Europe]| [US]|
| 2| [US]| null| [India, Europe]|
+-----+--------+---------------+-------------------+
>>> finaldf = reduce(
... DataFrame.unionAll,
... (df1.select("RowID", F.col("Bey").getItem(i), F.col("Gaga").getItem(i),F.col("Katy").getItem(i) )
... for i in range(maxlen))
... ).toDF(*df1.columns).na.drop('all',subset=df1.columns[1:]).orderBy('RowID')
>>> w = Window.partitionBy('RowID').orderBy('Bey')
>>> finaldf = finaldf.withColumn('ID',F.row_number().over(w))
>>> finaldf.select('RowID','ID','Gaga','Katy','Bey').show()
+-----+---+------+------+------+
|RowID| ID| Gaga| Katy| Bey|
+-----+---+------+------+------+
| 1| 1| US| India| null|
| 1| 2| UK|Europe| null|
| 1| 3| India| UK|Europe|
| 2| 1| null|Europe| null|
| 2| 2| null| India| US|
| 3| 1|Europe| US| null|
+-----+---+------+------+------+
Run Code Online (Sandbox Code Playgroud)