ggplot2:添加几何图形而不影响限制

Mar*_*rák 6 r ggplot2

我想向 ggplot 密度图添加额外的几何图形,但无需更改数据的显示限制,也无需通过自定义代码计算所需的限制。举个例子:

set.seed(12345)
N = 1000
d = data.frame(measured = ifelse(rbernoulli(N, 0.5), rpois(N, 100), rpois(N,1)))
d$fit = dgeom(d$measured, 0.6)
ggplot(d, aes(x = measured)) + geom_density() + geom_line(aes(y = fit), color = "blue")

ggplot(d, aes(x = measured)) + geom_density() + geom_line(aes(y = fit), color = "blue") + coord_cartesian(ylim = c(0,0.025))
Run Code Online (Sandbox Code Playgroud)

在第一个图中,拟合曲线(与“测量的”数据非常吻合)掩盖了测量数据的形状: 实际产量 我想裁剪该图以包含第一个几何图形的所有数据,但裁剪拟合曲线,如第二个图所示: 所需输出

虽然我可以使用 生成第二个图coord_cartesian,但这有两个缺点:

  1. 我必须通过自己的代码计算限制(这很麻烦且容易出错)
  2. 通过我自己的代码计算限制与分面不兼容。不可能(据我所知)提供每个面轴的限制coord_cartesian。然而我需要将情节与facet_wrap(scales = "free")

如果在计算坐标限制时不考虑第二个几何图形,则可以实现所需的输出 - 是否可以在不计算自定义 R 代码中的限制的情况下实现?

问题 R: How do I use coord_cartesian on facet_grid with free-ranging axis相关,但没有令人满意的答案。

cle*_*ens 2

您可以尝试的一件事是扩展fit和使用geom_density(aes(y = ..scaled..)

fit之间的缩放:01

d$fit_scaled <- (d$fit  - min(d$fit)) / (max(d$fit) - min(d$fit))
Run Code Online (Sandbox Code Playgroud)

使用fit_scaled..scaled..

ggplot(d, aes(x = measured)) + 
  geom_density(aes(y = ..scaled..)) + 
  geom_line(aes(y = fit_scaled), color = "blue")
Run Code Online (Sandbox Code Playgroud)

输出_1

这可以与facet_wrap()

d$group <- rep(letters[1:2], 500) #fake group

ggplot(d, aes(x = measured)) + 
  geom_density(aes(y = ..scaled..)) + 
  geom_line(aes(y = fit_scaled), color = "blue") + 
  facet_wrap(~ group, scales = "free")
Run Code Online (Sandbox Code Playgroud)

输出_2

不缩放数据的选项:

您可以使用http://www.cookbook-r.com/Graphs/Multiple_graphs_on_one_page_(ggplot2)/multiplot()中的函数

multiplot <- function(..., plotlist=NULL, file, cols=1, layout=NULL) {
  library(grid)
  plots <- c(list(...), plotlist)

  numPlots = length(plots)

  if (is.null(layout)) {

    layout <- matrix(seq(1, cols * ceiling(numPlots/cols)),
                    ncol = cols, nrow = ceiling(numPlots/cols))
  }

 if (numPlots==1) {
    print(plots[[1]])

  } else {

    grid.newpage()
    pushViewport(viewport(layout = grid.layout(nrow(layout), ncol(layout))))

    for (i in 1:numPlots) {

      matchidx <- as.data.frame(which(layout == i, arr.ind = TRUE))

      print(plots[[i]], vp = viewport(layout.pos.row = matchidx$row,
                                      layout.pos.col = matchidx$col))
    }
  }
}
Run Code Online (Sandbox Code Playgroud)

使用此函数,您可以合并两个图,这使得它们更容易阅读:

multiplot(
  ggplot(d, aes(x = measured)) + 
    geom_density() +
    facet_wrap(~ group, scales = "free"),
  ggplot(d, aes(x = measured)) +  
    geom_line(aes(y = fit), color = "blue") + 
    facet_wrap(~ group, scales = "free")
)
Run Code Online (Sandbox Code Playgroud)

这会给你:

输出_3

如果您想比较相邻的组,您可以使用withfacet_grid()而不是in :facet_wrap()cols = 2multiplot()

multiplot(
  ggplot(d, aes(x = measured)) + 
    geom_density() +
    facet_grid(group ~ ., scales = "free"),
  ggplot(d, aes(x = measured)) +  
    geom_line(aes(y = fit), color = "blue") + 
    facet_grid(group ~ ., scales = "free"),
  cols = 2
)
Run Code Online (Sandbox Code Playgroud)

它看起来像这样:

输出_4