Exi*_*xie 12 database scala jdbc apache-spark spark-structured-streaming
我已经实现了像这样的结构化流...
myDataSet
.map(r => StatementWrapper.Transform(r))
.writeStream
.foreach(MyWrapper.myWriter)
.start()
.awaitTermination()
Run Code Online (Sandbox Code Playgroud)
这一切似乎都有效,但看看MyWrapper.myWriter的吞吐量是可怕的.它有效地尝试成为JDBC接收器,它看起来像:
val myWriter: ForeachWriter[Seq[String]] = new ForeachWriter[Seq[String]] {
var connection: Connection = _
override def open(partitionId: Long, version: Long): Boolean = {
Try (connection = getRemoteConnection).isSuccess
}
override def process(row: Seq[String]) {
val statement = connection.createStatement()
try {
row.foreach( s => statement.execute(s) )
} catch {
case e: SQLSyntaxErrorException => println(e)
case e: SQLException => println(e)
} finally {
statement.closeOnCompletion()
}
}
override def close(errorOrNull: Throwable) {
connection.close()
}
}
Run Code Online (Sandbox Code Playgroud)
所以我的问题是 - 新的ForeachWriter是否为每一行实例化?因此,对数据集中的每一行调用open()和close()?
是否有更好的设计来提高吞吐量?
如何解析SQL语句一次并执行多次,同时保持数据库连接打开?
Yuv*_*kov 11
底层水槽的打开和关闭取决于您的实现的ForeachWriter.
调用的相关类ForeachWriter是ForeachSink,这是调用你的编写器的代码:
data.queryExecution.toRdd.foreachPartition { iter =>
if (writer.open(TaskContext.getPartitionId(), batchId)) {
try {
while (iter.hasNext) {
writer.process(encoder.fromRow(iter.next()))
}
} catch {
case e: Throwable =>
writer.close(e)
throw e
}
writer.close(null)
} else {
writer.close(null)
}
}
Run Code Online (Sandbox Code Playgroud)
尝试打开和关闭作者,从源生成的foreach批处理.如果您希望open并且close每次都打开并关闭接收器驱动程序,则需要通过实现来实现.
如果您想要更好地控制数据的处理方式,可以实现Sink提供批处理ID和基础的特征DataFrame:
trait Sink {
def addBatch(batchId: Long, data: DataFrame): Unit
}
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
3333 次 |
| 最近记录: |