EHB*_*EHB 6 python function filter pandas
我需要对数据使用Hampel过滤器,以去除异常值。
我无法在Python中找到现有的;仅在Matlab和R中。
[Matlab功能说明] [1]
[关于Matlab Hampel函数的统计交流的讨论] [2]
[R pracma包装小插图;包含hampel功能] [3]
我已经编写了以下函数,并根据R pracma包中的函数对其进行了建模。但是,它远比Matlab版本慢。这不理想;将不胜感激有关如何加快速度的投入。
该功能如下所示-
def hampel(x,k, t0=3):
'''adapted from hampel function in R package pracma
x= 1-d numpy array of numbers to be filtered
k= number of items in window/2 (# forward and backward wanted to capture in median filter)
t0= number of standard deviations to use; 3 is default
'''
n = len(x)
y = x #y is the corrected series
L = 1.4826
for i in range((k + 1),(n - k)):
if np.isnan(x[(i - k):(i + k+1)]).all():
continue
x0 = np.nanmedian(x[(i - k):(i + k+1)])
S0 = L * np.nanmedian(np.abs(x[(i - k):(i + k+1)] - x0))
if (np.abs(x[i] - x0) > t0 * S0):
y[i] = x0
return(y)
Run Code Online (Sandbox Code Playgroud)
我正在使用“ pracma”包中的R实现作为模型:
function (x, k, t0 = 3)
{
n <- length(x)
y <- x
ind <- c()
L <- 1.4826
for (i in (k + 1):(n - k)) {
x0 <- median(x[(i - k):(i + k)])
S0 <- L * median(abs(x[(i - k):(i + k)] - x0))
if (abs(x[i] - x0) > t0 * S0) {
y[i] <- x0
ind <- c(ind, i)
}
}
list(y = y, ind = ind)
}
Run Code Online (Sandbox Code Playgroud)
任何使函数更高效的帮助,或指向现有Python模块中现有实现的指针,将不胜感激。下面的示例数据;Jupyter中的%% timeit细胞魔术表明当前运行需要15秒:
vals=np.random.randn(250000)
vals[3000]=100
vals[200]=-9000
vals[-300]=8922273
%%timeit
hampel(vals, k=6)
Run Code Online (Sandbox Code Playgroud)
[1]:https://www.mathworks.com/help/signal/ref/hampel.html [2]:https://dsp.stackexchange.com/questions/26552/what-is-a-hampel-filter -and-how-does-it-work [3]:https://cran.r-project.org/web/packages/pracma/pracma.pdf
小智 9
上面@EHB 的解决方案很有帮助,但它是不正确的。具体来说,在median_abs_deviation中计算的滚动中位数有差异,它本身就是每个数据点与rolling_median中计算的滚动中位数的差异,但应该是滚动窗口中的数据与窗口上的中位数差异的中位数. 我把上面的代码修改了一下:
def hampel(vals_orig, k=7, t0=3):
'''
vals: pandas series of values from which to remove outliers
k: size of window (including the sample; 7 is equal to 3 on either side of value)
'''
#Make copy so original not edited
vals = vals_orig.copy()
#Hampel Filter
L = 1.4826
rolling_median = vals.rolling(window=k, center=True).median()
MAD = lambda x: np.median(np.abs(x - np.median(x)))
rolling_MAD = vals.rolling(window=k, center=True).apply(MAD)
threshold = t0 * L * rolling_MAD
difference = np.abs(vals - rolling_median)
'''
Perhaps a condition should be added here in the case that the threshold value
is 0.0; maybe do not mark as outlier. MAD may be 0.0 without the original values
being equal. See differences between MAD vs SDV.
'''
outlier_idx = difference > threshold
vals[outlier_idx] = rolling_median[outlier_idx]
return(vals)
Run Code Online (Sandbox Code Playgroud)
熊猫解决方案的速度要快几个数量级:
def hampel(vals_orig, k=7, t0=3):
'''
vals: pandas series of values from which to remove outliers
k: size of window (including the sample; 7 is equal to 3 on either side of value)
'''
#Make copy so original not edited
vals=vals_orig.copy()
#Hampel Filter
L= 1.4826
rolling_median=vals.rolling(k).median()
difference=np.abs(rolling_median-vals)
median_abs_deviation=difference.rolling(k).median()
threshold= t0 *L * median_abs_deviation
outlier_idx=difference>threshold
vals[outlier_idx]=np.nan
return(vals)
Run Code Online (Sandbox Code Playgroud)
定时时间为11毫秒vs 15秒;巨大的进步。