Lio*_*ens 4 simulation r linear-regression
我想用四个预测变量来模拟多元线性回归的数据,我可以自由指定
\n\n我得出了一个满足前两点的解决方案,但基于所有自变量彼此不相关的假设(请参见下面的代码)。为了获得标准化回归系数,我从平均值 = 0 和方差 = 1 的总体变量中进行采样。
\n\n# Specify population variance/covariance of four predictor variables that is sampled from\nsigma.1 <- matrix(c(1,0,0,0, \n 0,1,0,0, \n 0,0,1,0, \n 0,0,0,1),nrow=4,ncol=4)\n# Specify population means of four predictor varialbes that is sampled from \nmu.1 <- rep(0,4) \n\n# Specify sample size, true regression coefficients, and explained variance\nn.obs <- 50000 # to avoid sampling error problems\nintercept <- 0.5\nbeta <- c(0.4, 0.3, 0.25, 0.25)\nr2 <- 0.30\n\n# Create sample with four predictor variables\nlibrary(MASS)\nsample1 <- as.data.frame(mvrnorm(n = n.obs, mu.1, sigma.1, empirical=FALSE))\n\n# Add error variable based on desired r2\nvar.epsilon <- (beta[1]^2+beta[2]^2+beta[3]^2+beta[4]^2)*((1 - r2)/r2)\nsample1$epsilon <- rnorm(n.obs, sd=sqrt(var.epsilon))\n\n# Add y variable based on true coefficients and desired r2\nsample1$y <- intercept + beta[1]*sample1$V1 + beta[2]*sample1$V2 + \nbeta[3]*sample1$V3 + beta[4]*sample1$V4 + sample1$epsilon\n\n# Inspect model\nsummary(lm(y~V1+V2+V3+V4, data=sample1))\n\nCall:\nlm(formula = y ~ V1 + V2 + V3 + V4, data = sample1)\n\nResiduals:\n Min 1Q Median 3Q Max \n-4.0564 -0.6310 -0.0048 0.6339 3.7119 \n\nCoefficients:\n Estimate Std. Error t value Pr(>|t|) \n(Intercept) 0.496063 0.004175 118.82 <2e-16 ***\nV1 0.402588 0.004189 96.11 <2e-16 ***\nV2 0.291636 0.004178 69.81 <2e-16 ***\nV3 0.247347 0.004171 59.30 <2e-16 ***\nV4 0.253810 0.004175 60.79 <2e-16 ***\n---\nSignif. codes: 0 \xe2\x80\x98***\xe2\x80\x99 0.001 \xe2\x80\x98**\xe2\x80\x99 0.01 \xe2\x80\x98*\xe2\x80\x99 0.05 \xe2\x80\x98.\xe2\x80\x99 0.1 \xe2\x80\x98 \xe2\x80\x99 1\n\nResidual standard error: 0.9335 on 49995 degrees of freedom\nMultiple R-squared: 0.299, Adjusted R-squared: 0.299 \nF-statistic: 5332 on 4 and 49995 DF, p-value: < 2.2e-16\nRun Code Online (Sandbox Code Playgroud)\n\n问题:如果我的预测变量是相关的,那么如果指定它们的方差/协方差矩阵且非对角线元素不为 0,则 r2 和回归系数与我想要的方式有很大不同,例如通过使用
\n\nsigma.1 <- matrix(c(1,0.25,0.25,0.25, \n 0.25,1,0.25,0.25, \n 0.25,0.25,1,0.25, \n 0.25,0.25,0.25,1),nrow=4,ncol=4)\nRun Code Online (Sandbox Code Playgroud)\n\n有什么建议吗?\n谢谢!
\n经过更多思考我的问题后,我找到了答案。
\n\n上面的代码首先对彼此之间具有给定相关度的预测变量进行采样。然后根据所需的 r2 值添加误差列。然后将所有这些加在一起,添加 y 列。
\n\n到目前为止,产生错误的行只是
\n\nvar.epsilon <- (beta[1]^2+beta[2]^2+beta[3]^2+beta[4]^2)*((1 - r2)/r2)\nsample1$epsilon <- rnorm(n.obs, sd=sqrt(var.epsilon))\nRun Code Online (Sandbox Code Playgroud)\n\n因此它假设每个 beta 系数对 y 的解释贡献 100%(=自变量没有相互关系)。但如果 x 变量相关,则每个 beta 都不会(!)贡献 100%。这意味着误差的方差必须更大,因为变量之间存在一些可变性。
\n\n大了多少?只需调整错误项的创建,如下所示:
\n\nvar.epsilon <- (beta[1]^2+beta[2]^2+beta[3]^2+beta[4]^2+cor(sample1$V1, sample1$V2))*((1 - r2)/r2)\nRun Code Online (Sandbox Code Playgroud)\n\n因此,自变量的相关程度只需添加 即可将其添加到误差方差中cor(sample1$V1, sample1$V2)。在相关性为 0.25 的情况下,例如使用
sigma.1 <- matrix(c(1,0.25,0.25,0.25, \n 0.25,1,0.25,0.25, \n 0.25,0.25,1,0.25, \n 0.25,0.25,0.25,1),nrow=4,ncol=4)\nRun Code Online (Sandbox Code Playgroud)\n\ncor(sample1$V1, sample1$V2)类似于 0.25,并且该值被添加到误差项的方差中。
假设所有相互关系都相等,像这样,可以指定自变量之间任何程度的相互关系,以及真正的标准化回归系数和所需的 R2。
\n\n证明:
\n\nsigma.1 <- matrix(c(1,0.35,0.35,0.35, \n 0.35,1,0.35,0.35, \n 0.35,0.35,1,0.35, \n 0.35,0.35,0.35,1),nrow=4,ncol=4)\n# Specify population means of four predictor varialbes that is sampled from \nmu.1 <- rep(0,4) \n\n# Specify sample size, true regression coefficients, and explained variance\nn.obs <- 500000 # to avoid sampling error problems\nintercept <- 0.5\nbeta <- c(0.4, 0.3, 0.25, 0.25)\nr2 <- 0.15\n\n# Create sample with four predictor variables\nlibrary(MASS)\nsample1 <- as.data.frame(mvrnorm(n = n.obs, mu.1, sigma.1, empirical=FALSE))\n\n# Add error variable based on desired r2\nvar.epsilon <- (beta[1]^2+beta[2]^2+beta[3]^2+beta[4]^2+cor(sample1$V1, sample1$V2))*((1 - r2)/r2)\nsample1$epsilon <- rnorm(n.obs, sd=sqrt(var.epsilon))\n\n# Add y variable based on true coefficients and desired r2\nsample1$y <- intercept + beta[1]*sample1$V1 + beta[2]*sample1$V2 + \n beta[3]*sample1$V3 + beta[4]*sample1$V4 + sample1$epsilon\n\n# Inspect model\nsummary(lm(y~V1+V2+V3+V4, data=sample1))\n\n> summary(lm(y~V1+V2+V3+V4, data=sample1))\n\nCall:\nlm(formula = y ~ V1 + V2 + V3 + V4, data = sample1)\n\nResiduals:\n Min 1Q Median 3Q Max \n-10.7250 -1.3696 0.0017 1.3650 9.0460 \n\nCoefficients:\n Estimate Std. Error t value Pr(>|t|) \n(Intercept) 0.499554 0.002869 174.14 <2e-16 ***\nV1 0.406360 0.003236 125.56 <2e-16 ***\nV2 0.298892 0.003233 92.45 <2e-16 ***\nV3 0.247581 0.003240 76.42 <2e-16 ***\nV4 0.253510 0.003241 78.23 <2e-16 ***\n---\nSignif. codes: 0 \xe2\x80\x98***\xe2\x80\x99 0.001 \xe2\x80\x98**\xe2\x80\x99 0.01 \xe2\x80\x98*\xe2\x80\x99 0.05 \xe2\x80\x98.\xe2\x80\x99 0.1 \xe2\x80\x98 \xe2\x80\x99 1\n\nResidual standard error: 2.028 on 499995 degrees of freedom\nMultiple R-squared: 0.1558, Adjusted R-squared: 0.1557 \nF-statistic: 2.306e+04 on 4 and 499995 DF, p-value: < 2.2e-16\nRun Code Online (Sandbox Code Playgroud)\n
| 归档时间: |
|
| 查看次数: |
1701 次 |
| 最近记录: |