J R*_*za 16 python nltk pandas
我有一张如下表:
URN Firm_Name
0 104472 R.X. Yah & Co
1 104873 Big Building Society
2 109986 St James's Society
3 114058 The Kensington Society Ltd
4 113438 MMV Oil Associates Ltd
Run Code Online (Sandbox Code Playgroud)
我想计算Firm_Name列中所有单词的频率,得到如下输出:
我试过以下代码:
import pandas as pd
import nltk
data = pd.read_csv("X:\Firm_Data.csv")
top_N = 20
word_dist = nltk.FreqDist(data['Firm_Name'])
print('All frequencies')
print('='*60)
rslt=pd.DataFrame(word_dist.most_common(top_N),columns=['Word','Frequency'])
print(rslt)
print ('='*60)
Run Code Online (Sandbox Code Playgroud)
但是,以下代码不会产生唯一的字数.
Zer*_*ero 39
IIUIC,使用 value_counts()
In [3361]: df.Firm_Name.str.split(expand=True).stack().value_counts()
Out[3361]:
Society 3
Ltd 2
James's 1
R.X. 1
Yah 1
Associates 1
St 1
Kensington 1
MMV 1
Big 1
& 1
The 1
Co 1
Oil 1
Building 1
dtype: int64
Run Code Online (Sandbox Code Playgroud)
要么,
pd.Series(np.concatenate([x.split() for x in df.Firm_Name])).value_counts()
Run Code Online (Sandbox Code Playgroud)
要么,
pd.Series(' '.join(df.Firm_Name).split()).value_counts()
Run Code Online (Sandbox Code Playgroud)
对于前N个,例如3个
In [3379]: pd.Series(' '.join(df.Firm_Name).split()).value_counts()[:3]
Out[3379]:
Society 3
Ltd 2
James's 1
dtype: int64
Run Code Online (Sandbox Code Playgroud)
细节
In [3380]: df
Out[3380]:
URN Firm_Name
0 104472 R.X. Yah & Co
1 104873 Big Building Society
2 109986 St James's Society
3 114058 The Kensington Society Ltd
4 113438 MMV Oil Associates Ltd
Run Code Online (Sandbox Code Playgroud)
你需要str.cat用lower先为concanecate一个所有的值string,那么就需要word_tokenize和最后一次使用您的解决方案:
top_N = 4
#if not necessary all lower
a = data['Firm_Name'].str.lower().str.cat(sep=' ')
words = nltk.tokenize.word_tokenize(a)
word_dist = nltk.FreqDist(words)
print (word_dist)
<FreqDist with 17 samples and 20 outcomes>
rslt = pd.DataFrame(word_dist.most_common(top_N),
columns=['Word', 'Frequency'])
print(rslt)
Word Frequency
0 society 3
1 ltd 2
2 the 1
3 co 1
Run Code Online (Sandbox Code Playgroud)
也可以lower根据需要删除:
top_N = 4
a = data['Firm_Name'].str.cat(sep=' ')
words = nltk.tokenize.word_tokenize(a)
word_dist = nltk.FreqDist(words)
rslt = pd.DataFrame(word_dist.most_common(top_N),
columns=['Word', 'Frequency'])
print(rslt)
Word Frequency
0 Society 3
1 Ltd 2
2 MMV 1
3 Kensington 1
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
17311 次 |
| 最近记录: |