6 python apache-spark pyspark apache-spark-mllib
我可以通过以下方式从CountVecotizerModel中提取词汇
fl = StopWordsRemover(inputCol="words", outputCol="filtered")
df = fl.transform(df)
cv = CountVectorizer(inputCol="filtered", outputCol="rawFeatures")
model = cv.fit(df)
print(model.vocabulary)
Run Code Online (Sandbox Code Playgroud)
上面的代码将打印带有索引作为ID的词汇表。
现在,我创建了上述代码的管道,如下所示:
rm_stop_words = StopWordsRemover(inputCol="words", outputCol="filtered")
count_freq = CountVectorizer(inputCol=rm_stop_words.getOutputCol(), outputCol="rawFeatures")
pipeline = Pipeline(stages=[rm_stop_words, count_freq])
model = pipeline.fit(dfm)
df = model.transform(dfm)
print(model.vocabulary) # This won't work as it's not CountVectorizerModel
Run Code Online (Sandbox Code Playgroud)
它将引发以下错误
Run Code Online (Sandbox Code Playgroud)print(len(model.vocabulary))AttributeError:“ PipelineModel”对象没有属性“ vocabulary”
那么如何从管道中提取Model属性呢?
与其他任何舞台属性一样,方法是stages:
stages = model.stages
Run Code Online (Sandbox Code Playgroud)
找到您感兴趣的一个:
from pyspark.ml.feature import CountVectorizerModel
vectorizers = [s for s in stages if isinstance(s, CountVectorizerModel)]
Run Code Online (Sandbox Code Playgroud)
并获取所需的字段:
[v.vocabulary for v in vectorizers]
Run Code Online (Sandbox Code Playgroud)