Lok*_*ana 0 apache-spark apache-spark-sql pyspark spark-dataframe apache-spark-ml
我正在尝试执行随机森林分类器并使用交叉验证评估模型。我与pySpark合作。输入的CSV文件将以Spark DataFrame格式加载。但是在构建模型时我遇到了一个问题。
下面是代码。
from pyspark import SparkContext
from pyspark.sql import SQLContext
from pyspark.ml import Pipeline
from pyspark.ml.classification import RandomForestClassifier
from pyspark.ml.tuning import CrossValidator, ParamGridBuilder
from pyspark.ml.evaluation import MulticlassClassificationEvaluator
from pyspark.mllib.evaluation import BinaryClassificationMetrics
sc = SparkContext()
sqlContext = SQLContext(sc)
trainingData =(sqlContext.read
.format("com.databricks.spark.csv")
.option("header", "true")
.option("inferSchema", "true")
.load("/PATH/CSVFile"))
numFolds = 10
rf = RandomForestClassifier(numTrees=100, maxDepth=5, maxBins=5, labelCol="V5409",featuresCol="features",seed=42)
evaluator = MulticlassClassificationEvaluator().setLabelCol("V5409").setPredictionCol("prediction").setMetricName("accuracy")
paramGrid = ParamGridBuilder().build()
pipeline = Pipeline(stages=[rf])
paramGrid=ParamGridBuilder().build()
crossval = CrossValidator(
estimator=pipeline,
estimatorParamMaps=paramGrid,
evaluator=evaluator,
numFolds=numFolds)
model = crossval.fit(trainingData)
print accuracy
Run Code Online (Sandbox Code Playgroud)
我低于错误
Traceback (most recent call last):
File "SparkDF.py", line 41, in <module>
model = crossval.fit(trainingData)
File "/usr/local/spark-2.1.1/python/pyspark/ml/base.py", line 64, in fit
return self._fit(dataset)
File "/usr/local/spark-2.1.1/python/pyspark/ml/tuning.py", line 236, in _fit
model = est.fit(train, epm[j])
File "/usr/local/spark-2.1.1/python/pyspark/ml/base.py", line 64, in fit
return self._fit(dataset)
File "/usr/local/spark-2.1.1/python/pyspark/ml/pipeline.py", line 108, in _fit
model = stage.fit(dataset)
File "/usr/local/spark-2.1.1/python/pyspark/ml/base.py", line 64, in fit
return self._fit(dataset)
File "/usr/local/spark-2.1.1/python/pyspark/ml/wrapper.py", line 236, in _fit
java_model = self._fit_java(dataset)
File "/usr/local/spark-2.1.1/python/pyspark/ml/wrapper.py", line 233, in _fit_java
return self._java_obj.fit(dataset._jdf)
File "/home/hadoopuser/anaconda2/lib/python2.7/site-packages/py4j/java_gateway.py", line 1160, in __call__
answer, self.gateway_client, self.target_id, self.name)
File "/usr/local/spark-2.1.1/python/pyspark/sql/utils.py", line 79, in deco
raise IllegalArgumentException(s.split(': ', 1)[1], stackTrace)
pyspark.sql.utils.IllegalArgumentException: u'Field "features" does not exist.'
hadoopuser@rackserver-PowerEdge-R220:~/workspace/RandomForest_CV$
Run Code Online (Sandbox Code Playgroud)
请帮我解决pySpark中的此问题。谢谢。
我在这里显示数据集的详细信息。不,我没有专门的功能栏。以下是trainingData.take(5)的输出,其中显示数据集的前5行。
[行(V4366 = 0.0,V4460 = 0.232,V4916 = -0.017,V1495 = -0.104,V1639 = 0.005,V1967 = -0.008,V3049 = 0.177,V3746 = -0.675,V3869 = -3.451,V524 = 0.004,V5409 = 0),行(V4366 = 0.0,V4460 = 0.111,V4916 = -0.003,V1495 = -0.137,V1639 = 0.001,V1967 = -0.01,V3049 = 0.01,V3746 = -0.867,V3869 = -2.759,V524 = 0.0, V5409 = 0),行(V4366 = 0.0,V4460 = -0.391,V4916 = -0.003,V1495 = -0.155,V1639 = -0.006,V1967 = -0.019,V3049 = -0.706,V3746 = 0.166,V3869 = 0.189,V524 = 0.001,V5409 = 0),行(V4366 = 0.0,V4460 = 0.098,V4916 = -0.012,V1495 = -0.108,V1639 = 0.005,V1967 = -0.002,V3049 = 0.033,V3746 = -0.787,V3869 = -0.926 ,V524 = 0.002,V5409 = 0),行(V4366 = 0.0,V4460 = 0.026,V4916 = -0.004,V1495 = -0.139,V1639 = 0.003,V1967 = -0.006,V3049 = -0.045,V3746 = -0.208,V3869 = -0.782,V524 = 0.001,V5409 = 0)]
其中V433至V524是功能。V5409是类别标签。
Spark数据帧的使用不像Spark ML中那样。所有的功能,需要在一个载体单柱,通常命名features
。下面以您提供的5行为例,说明了如何做到这一点:
spark.version
# u'2.2.0'
from pyspark.sql import Row
from pyspark.ml.linalg import Vectors
# your sample data:
temp_df = spark.createDataFrame([Row(V4366=0.0, V4460=0.232, V4916=-0.017, V1495=-0.104, V1639=0.005, V1967=-0.008, V3049=0.177, V3746=-0.675, V3869=-3.451, V524=0.004, V5409=0), Row(V4366=0.0, V4460=0.111, V4916=-0.003, V1495=-0.137, V1639=0.001, V1967=-0.01, V3049=0.01, V3746=-0.867, V3869=-2.759, V524=0.0, V5409=0), Row(V4366=0.0, V4460=-0.391, V4916=-0.003, V1495=-0.155, V1639=-0.006, V1967=-0.019, V3049=-0.706, V3746=0.166, V3869=0.189, V524=0.001, V5409=0), Row(V4366=0.0, V4460=0.098, V4916=-0.012, V1495=-0.108, V1639=0.005, V1967=-0.002, V3049=0.033, V3746=-0.787, V3869=-0.926, V524=0.002, V5409=0), Row(V4366=0.0, V4460=0.026, V4916=-0.004, V1495=-0.139, V1639=0.003, V1967=-0.006, V3049=-0.045, V3746=-0.208, V3869=-0.782, V524=0.001, V5409=0)])
trainingData=temp_df.rdd.map(lambda x:(Vectors.dense(x[0:-1]), x[-1])).toDF(["features", "label"])
trainingData.show()
# +--------------------+-----+
# | features|label|
# +--------------------+-----+
# |[-0.104,0.005,-0....| 0|
# |[-0.137,0.001,-0....| 0|
# |[-0.155,-0.006,-0...| 0|
# |[-0.108,0.005,-0....| 0|
# |[-0.139,0.003,-0....| 0|
# +--------------------+-----+
Run Code Online (Sandbox Code Playgroud)
在此之后,您的管道应该运行正常(我假设你的确具有多类分类,因为您的样本只包含0作为标签),只有在不断变化的标签栏rf
和evaluator
如下:
rf = RandomForestClassifier(numTrees=100, maxDepth=5, maxBins=5, labelCol="label",featuresCol="features",seed=42)
evaluator = MulticlassClassificationEvaluator().setLabelCol("label").setPredictionCol("prediction").setMetricName("accuracy")
Run Code Online (Sandbox Code Playgroud)
最后,print accuracy
将无法使用-您将需要model.avgMetrics
。
归档时间: |
|
查看次数: |
5985 次 |
最近记录: |