T.P*_*Poe 9 python restore save tensorflow
我已经在Tensorflow中训练了我的NN并保存了这样的模型:
def neural_net(x):
layer_1 = tf.layers.dense(inputs=x, units=195, activation=tf.nn.sigmoid)
out_layer = tf.layers.dense(inputs=layer_1, units=6)
return out_layer
train_x = pd.read_csv("data_x.csv", sep=" ")
train_y = pd.read_csv("data_y.csv", sep=" ")
train_x = train_x / 6 - 0.5
train_size = 0.9
train_cnt = int(floor(train_x.shape[0] * train_size))
x_train = train_x.iloc[0:train_cnt].values
y_train = train_y.iloc[0:train_cnt].values
x_test = train_x.iloc[train_cnt:].values
y_test = train_y.iloc[train_cnt:].values
x = tf.placeholder("float", [None, 386])
y = tf.placeholder("float", [None, 6])
nn_output = neural_net(x)
cost = tf.reduce_mean(tf.losses.mean_squared_error(labels=y, predictions=nn_output))
optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(cost)
training_epochs = 5000
display_step = 1000
batch_size = 30
keep_prob = tf.placeholder("float")
saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(training_epochs):
total_batch = int(len(x_train) / batch_size)
x_batches = np.array_split(x_train, total_batch)
y_batches = np.array_split(y_train, total_batch)
for i in range(total_batch):
batch_x, batch_y = x_batches[i], y_batches[i]
_, c = sess.run([optimizer, cost],
feed_dict={
x: batch_x,
y: batch_y,
keep_prob: 0.8
})
saver.save(sess, 'trained_model', global_step=1000)
Run Code Online (Sandbox Code Playgroud)
现在,我想在另一个文件中使用经过训练的模型。当然,有很多恢复和保存模型的例子,我经历了很多例子。我仍然无法使它们中的任何一个起作用,总是存在某种错误。这是我的还原文件,请您帮我使其还原保存的模型吗?
saver = tf.train.import_meta_graph('trained_model-1000.meta')
y_pred = []
with tf.Session() as sess:
saver.restore(sess, tf.train.latest_checkpoint('./'))
sess.run([y_pred], feed_dict={x: input_values})
Run Code Online (Sandbox Code Playgroud)
例如,这种尝试给我带来错误“会话图为空。在调用run()之前向该图添加操作”。那么我应该对图形添加什么操作,以及如何进行?我不知道该操作应在我的模型中执行什么...我不理解在Tensorflow中保存/恢复的整个概念。还是应该完全不同地进行还原?提前致谢!
如果我错了,请原谅我,但tf.train.Saver()只保存变量值而不保存图表本身。这意味着,如果您想将模型加载到不同的文件中,则需要重建图形或以某种方式加载图形。张量流文档指出:
tf.train.Saver 对象不仅将变量保存到检查点文件,还可以恢复变量。请注意,当您从文件中恢复变量时,不必事先初始化它们。
考虑以下示例:
保存模型的一个文件:
# Create some variables.
v1 = tf.get_variable("v1", shape=[3], initializer = tf.zeros_initializer)
v2 = tf.get_variable("v2", shape=[5], initializer = tf.zeros_initializer)
inc_v1 = v1.assign(v1+1)
dec_v2 = v2.assign(v2-1)
# Add an op to initialize the variables.
init_op = tf.global_variables_initializer()
# Add ops to save and restore all the variables.
saver = tf.train.Saver()
# Later, launch the model, initialize the variables, do some work, and save the
# variables to disk.
with tf.Session() as sess:
sess.run(init_op)
# Do some work with the model.
inc_v1.op.run()
dec_v2.op.run()
# Save the variables to disk.
save_path = saver.save(sess, "/tmp/model.ckpt")
print("Model saved in file: %s" % save_path)
Run Code Online (Sandbox Code Playgroud)
加载先前保存的模型的另一个文件:
tf.reset_default_graph()
# Create some variables.
v1 = tf.get_variable("v1", shape=[3])
v2 = tf.get_variable("v2", shape=[5])
# Add ops to save and restore all the variables.
saver = tf.train.Saver()
# Later, launch the model, use the saver to restore variables from disk, and
# do some work with the model.
with tf.Session() as sess:
# Restore variables from disk.
saver.restore(sess, "/tmp/model.ckpt")
print("Model restored.")
# Check the values of the variables
print("v1 : %s" % v1.eval())
print("v2 : %s" % v2.eval())
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
18962 次 |
| 最近记录: |