将 PyTorch 代码从 CPU 移植到 GPU

alv*_*vas 6 python torch pytorch tensor

遵循https://github.com/spro/practical-pytorch/blob/master/seq2seq-translation/seq2seq-translation.ipynb的教程

有一个USE_CUDA标志用于控制 CPU(当为 False)到 GPU(当为 True)类型之间的变量和张量类型。

使用en-fr.tsv 中的数据并将句子转换为变量:

import unicodedata
import string
import re
import random
import time
import math

from gensim.corpora.dictionary import Dictionary

import torch
import torch.nn as nn
from torch.autograd import Variable
from torch import LongTensor, FloatTensor
from torch import optim
import torch.nn.functional as F

import numpy as np

MAX_LENGTH = 10
USE_CUDA = False

# Turn a Unicode string to plain ASCII, thanks to http://stackoverflow.com/a/518232/2809427
def unicode_to_ascii(s):
    return ''.join(
        c for c in unicodedata.normalize('NFD', s)
        if unicodedata.category(c) != 'Mn'
    )

# Lowercase, trim, and remove non-letter characters
def normalize_string(s):
    s = unicode_to_ascii(s.lower().strip())
    s = re.sub(r"([.!?])", r" \1", s)
    s = re.sub(r"[^a-zA-Z.!?]+", r" ", s)
    return s

SOS_IDX, SOS_TOKEN = 0, '<s>'
EOS_IDX, EOS_TOKEN = 1, '</s>'
UNK_IDX, UNK_TOKEN = 2, '<unk>'
PAD_IDX, PAD_TOKEN = 3, '<blank>'

lines = open('en-fr.tsv').read().strip().split('\n')
pairs = [[normalize_string(s).split() for s in l.split('\t')] for l in lines]
src_sents, trg_sents = zip(*pairs)

src_dict = Dictionary([[SOS_TOKEN, EOS_TOKEN, UNK_TOKEN, PAD_TOKEN]])
src_dict.add_documents(src_sents)

trg_dict = Dictionary([[SOS_TOKEN, EOS_TOKEN, UNK_TOKEN, PAD_TOKEN]])
trg_dict.add_documents(trg_sents)

def variablize_sentences(sentence, dictionary):
    indices = [dictionary.token2id[tok] for tok in sentence] + [dictionary.token2id[EOS_TOKEN]]
    var = Variable(LongTensor(indices).view(-1, 1))
    return var.cuda() if USE_CUDA else var

input_variables = [variablize_sentences(sent, src_dict) for sent in src_sents]
output_variables = [variablize_sentences(sent, trg_dict) for sent in trg_sents]
Run Code Online (Sandbox Code Playgroud)

并使用 Encoder-Attn-Decoder 网络:

class EncoderRNN(nn.Module):
    def __init__(self, input_size, hidden_size, n_layers=1):
        super(EncoderRNN, self).__init__()

        self.input_size = input_size
        self.hidden_size = hidden_size
        self.n_layers = n_layers

        self.embedding = nn.Embedding(input_size, hidden_size)    
        self.gru = nn.GRU(hidden_size, hidden_size, n_layers)

        self.embedding = self.embedding.cuda() if USE_CUDA else self.embedding
        self.gru = self.gru.cuda() if USE_CUDA else self.gru

    def forward(self, word_inputs, hidden):
        seq_len = len(word_inputs)

        embedded = self.embedding(word_inputs).view(seq_len, 1, -1)
        embedded = embedded.cuda() if USE_CUDA else embedded

        output, hidden = self.gru(embedded, hidden)
        output = output.cuda() if USE_CUDA else output
        hiddne = hidden.cuda() if USE_CUDA else hidden

        return output, hidden

    def init_hidden(self):
        hidden = Variable(torch.zeros(self.n_layers, 1, self.hidden_size))
        return hidden.cuda() if USE_CUDA else hidden

class Attn(nn.Module):
    def __init__(self, method, hidden_size, max_length=MAX_LENGTH):
        super(Attn, self).__init__()

        self.method = method
        self.hidden_size = hidden_size

        if self.method == 'general':
            self.attn = nn.Linear(self.hidden_size, hidden_size)

        elif self.method == 'concat':
            self.attn = nn.Linear(self.hidden_size * 2, hidden_size)
            self.other = nn.Parameter(FloatTensor(1, hidden_size))

    def forward(self, hidden, encoder_outputs):
        seq_len = len(encoder_outputs)

        # Create variable to store attention energies
        attn_energies = Variable(torch.zeros(seq_len)) # B x 1 x S
        attn_energies = attn_energies.cuda() if USE_CUDA else attn_energies
        # Calculate energies for each encoder output
        for i in range(seq_len):
            attn_energies[i] = self.score(hidden, encoder_outputs[i])

        # Normalize energies to weights in range 0 to 1, resize to 1 x 1 x seq_len
        return F.softmax(attn_energies).unsqueeze(0).unsqueeze(0)

    def score(self, hidden, encoder_output):
        if self.method == 'dot':
            energy =torch.dot(hidden.view(-1), encoder_output.view(-1))
        elif self.method == 'general':
            energy = self.attn(encoder_output)
            energy = torch.dot(hidden.view(-1), energy.view(-1))
        elif self.method == 'concat':
            energy = self.attn(torch.cat((hidden, encoder_output), 1))
            energy = torch.dot(self.v.view(-1), energy.view(-1))
        return energy

class AttnDecoderRNN(nn.Module):
    def __init__(self, attn_model, hidden_size, output_size, n_layers=1, dropout_p=0.1):
        super(AttnDecoderRNN, self).__init__()

        # Keep parameters for reference
        self.attn_model = attn_model
        self.hidden_size = hidden_size
        self.output_size = output_size
        self.n_layers = n_layers
        self.dropout_p = dropout_p

        # Define layers
        self.embedding = nn.Embedding(output_size, hidden_size)
        self.gru = nn.GRU(hidden_size * 2, hidden_size, n_layers, dropout=dropout_p)
        self.out = nn.Linear(hidden_size * 2, output_size)

        self.embedding = self.embedding.cuda() if USE_CUDA else self.embedding
        self.gru = self.gru.cuda() if USE_CUDA else self.gru
        self.out = self.out.cuda() if USE_CUDA else self.out


        # Choose attention model
        if attn_model != 'none':
            self.attn = Attn(attn_model, hidden_size)
            self.attn = self.attn.cuda() if USE_CUDA else self.attn

    def forward(self, word_input, last_context, last_hidden, encoder_outputs):
        # Note: we run this one step at a time

        # Get the embedding of the current input word (last output word)
        word_embedded = self.embedding(word_input).view(1, 1, -1) # S=1 x B x N

        # Combine embedded input word and last context, run through RNN
        rnn_input = torch.cat((word_embedded, last_context.unsqueeze(0)), 2)
        rnn_output, hidden = self.gru(rnn_input, last_hidden)

        # Calculate attention from current RNN state and all encoder outputs; apply to encoder outputs
        attn_weights = self.attn(rnn_output.squeeze(0), encoder_outputs)
        context = attn_weights.bmm(encoder_outputs.transpose(0, 1)) # B x 1 x N

        # Final output layer (next word prediction) using the RNN hidden state and context vector
        rnn_output = rnn_output.squeeze(0) # S=1 x B x N -> B x N
        context = context.squeeze(1)       # B x S=1 x N -> B x N
        output = F.log_softmax(self.out(torch.cat((rnn_output, context), 1)))

        if USE_CUDA:
            return output.cuda(), context.cuda(), hidden.cuda(), attn_weights.cuda()
        else:
            return output, context, hidden, attn_weights
Run Code Online (Sandbox Code Playgroud)

并测试网络:

encoder_test = EncoderRNN(10, 10, 2) # I, H , L
decoder_test = AttnDecoderRNN('general', 10, 10, 2) # A, H, O, L

encoder_hidden = encoder_test.init_hidden()
if USE_CUDA:
    word_inputs = Variable(torch.LongTensor([1, 2, 3]).cuda())
else:
    word_inputs = Variable(torch.LongTensor([1, 2, 3]))
encoder_outputs, encoder_hidden = encoder_test(word_inputs, encoder_hidden)
decoder_attns = torch.zeros(1, 3, 3)
decoder_hidden = encoder_hidden
decoder_context = Variable(torch.zeros(1, decoder_test.hidden_size))

decoder_output, decoder_context, decoder_hidden, decoder_attn = decoder_test(word_inputs[0], decoder_context, decoder_hidden, encoder_outputs)
print(decoder_output)
print(decoder_hidden)
print(decoder_attn)
Run Code Online (Sandbox Code Playgroud)

该代码在 CPU 上运行良好,

[出去]:

EncoderRNN (
  (embedding): Embedding(10, 10)
  (gru): GRU(10, 10, num_layers=2)
)
AttnDecoderRNN (
  (embedding): Embedding(10, 10)
  (gru): GRU(20, 10, num_layers=2, dropout=0.1)
  (out): Linear (20 -> 10)
  (attn): Attn (
    (attn): Linear (10 -> 10)
  )
)
Variable containing:
-2.4378 -2.3556 -2.3391 -2.5070 -2.3439 -2.3415 -2.3976 -2.1832 -1.9976 -2.2213
[torch.FloatTensor of size 1x10]

Variable containing:
(0 ,.,.) = 

Columns 0 to 8 
  -0.2325  0.0775  0.5415  0.4876 -0.5771 -0.0687  0.1832 -0.5285  0.2508

Columns 9 to 9 
  -0.1837

(1 ,.,.) = 

Columns 0 to 8 
  -0.1389 -0.2605 -0.0518  0.3405  0.0774  0.1815  0.0297 -0.1304 -0.1015

Columns 9 to 9 
   0.2602
[torch.FloatTensor of size 2x1x10]

Variable containing:
(0 ,.,.) = 
  0.3334  0.3291  0.3374
[torch.FloatTensor of size 1x1x3]
Run Code Online (Sandbox Code Playgroud)

但是当将标志更改为 时USE_GPU=True,它会在初始化decoder_test对象时抛出错误,它会抛出一个TypeError

---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-76-b3c660013934> in <module>()
     12 decoder_context = Variable(torch.zeros(1, decoder_test.hidden_size))
     13 
---> 14 decoder_output, decoder_context, decoder_hidden, decoder_attn = decoder_test(word_inputs[0], decoder_context, decoder_hidden, encoder_outputs)
     15 print(decoder_output)
     16 print(decoder_hidden)

~/.local/lib/python3.5/site-packages/torch/nn/modules/module.py in __call__(self, *input, **kwargs)
    222         for hook in self._forward_pre_hooks.values():
    223             hook(self, input)
--> 224         result = self.forward(*input, **kwargs)
    225         for hook in self._forward_hooks.values():
    226             hook_result = hook(self, input, result)

<ipython-input-75-34ecfe9b3112> in forward(self, word_input, last_context, last_hidden, encoder_outputs)
     32 
     33         # Combine embedded input word and last context, run through RNN
---> 34         rnn_input = torch.cat((word_embedded, last_context.unsqueeze(0)), 2)
     35         rnn_output, hidden = self.gru(rnn_input, last_hidden)
     36 

~/.local/lib/python3.5/site-packages/torch/autograd/variable.py in cat(iterable, dim)
    895         @staticmethod
    896         def cat(iterable, dim=0):
--> 897             return Concat.apply(dim, *iterable)
    898 
    899         @staticmethod

~/.local/lib/python3.5/site-packages/torch/autograd/_functions/tensor.py in forward(ctx, dim, *inputs)
    315         ctx.dim = dim
    316         ctx.input_sizes = [i.size(dim) for i in inputs]
--> 317         return torch.cat(inputs, dim)
    318 
    319     @staticmethod

TypeError: cat received an invalid combination of arguments - got (tuple, int), but expected one of:
 * (sequence[torch.cuda.FloatTensor] seq)
 * (sequence[torch.cuda.FloatTensor] seq, int dim)
      didn't match because some of the arguments have invalid types: (tuple, int)
Run Code Online (Sandbox Code Playgroud)

问题是为什么这些类型在 CUDA 中不匹配,但它适用于 CPU 以及如何解决这个问题?

PyTorch 是否有一个全局标志来将所有类型更改为 CUDA 类型,而不是与 CPU/GPU 类型混淆?

swi*_*tyy 8

你也可以试试:

net = YouNetworkClass()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
net.to(device)
Run Code Online (Sandbox Code Playgroud)

之后,您还必须将word_inputs,encoder_hidden和发送decoder_context到GPU:

word_inputs, encoder_hidden, decoder_context = word_inputs.to(device), encoder_hidden.to(device), decoder_context.to(device)
Run Code Online (Sandbox Code Playgroud)

看这里:https : //pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html#training-on-gpu


alv*_*vas 5

PyTorch 是否有一个全局标志,可以将所有类型更改为 CUDA 类型,而不会弄乱 CPU/GPU 类型?

没有。

(来源:https://discuss.pytorch.org/t/porting-seq2seq-tutorial-from-spro-practical-pytorh-from-cpu-to-gpu/8604


具体到例子:

对象的输入变量decoder_test需要具有.cuda()类型。进一步来说:

encoder_hidden = encoder_test.init_hidden()
---> encoder_hidden = encoder_test.init_hidden().cuda()


decoder_context = Variable(torch.zeros(1, decoder_test.hidden_size))
---> decoder_context = Variable(torch.zeros(1, decoder_test.hidden_size)).cuda()
Run Code Online (Sandbox Code Playgroud)

所以测试网络的代码应该是:

encoder_test = EncoderRNN(10, 10, 2) # I, H , L
decoder_test = AttnDecoderRNN('general', 10, 10, 2) # A, H, O, L

encoder_hidden = encoder_test.init_hidden().cuda()
if USE_CUDA:
    word_inputs = Variable(torch.LongTensor([1, 2, 3]).cuda())
else:
    word_inputs = Variable(torch.LongTensor([1, 2, 3]))
encoder_outputs, encoder_hidden = encoder_test(word_inputs, encoder_hidden)
decoder_attns = torch.zeros(1, 3, 3)
decoder_hidden = encoder_hidden
decoder_context = Variable(torch.zeros(1, decoder_test.hidden_size)).cuda()

decoder_output, decoder_context, decoder_hidden, decoder_attn = decoder_test(word_inputs[0], decoder_context, decoder_hidden, encoder_outputs)
print(decoder_output)
print(decoder_hidden)
print(decoder_attn)
Run Code Online (Sandbox Code Playgroud)

[出去]:

Variable containing:
-2.1412 -2.4589 -2.4042 -2.1591 -2.5080 -2.0839 -2.5058 -2.3831 -2.4468 -2.0804
[torch.cuda.FloatTensor of size 1x10 (GPU 0)]

Variable containing:
(0 ,.,.) = 

Columns 0 to 8 
  -0.0264 -0.0689  0.1049  0.0760  0.1017 -0.4585 -0.1273  0.0449 -0.3271

Columns 9 to 9 
  -0.0104

(1 ,.,.) = 

Columns 0 to 8 
  -0.0308 -0.0690 -0.0258 -0.2759  0.1403 -0.0468 -0.0205  0.0126 -0.1729

Columns 9 to 9 
   0.0599
[torch.cuda.FloatTensor of size 2x1x10 (GPU 0)]

Variable containing:
(0 ,.,.) = 
  0.3328  0.3328  0.3344
[torch.cuda.FloatTensor of size 1x1x3 (GPU 0)]
Run Code Online (Sandbox Code Playgroud)


归档时间:

查看次数:

12078 次

最近记录:

4 年,7 月 前