Spark LinearRegressionSummary"正常"摘要

Pau*_*ers 9 apache-spark-mllib

根据LinearRegressionSummary(Spark 2.1.0 JavaDoc),p值仅适用于"普通"求解器.

该值仅在使用"普通"求解器时可用.

到底是什么"正常"解算器?

我这样做:

import org.apache.spark.ml.{Pipeline, PipelineModel} 
import org.apache.spark.ml.evaluation.RegressionEvaluator 
import org.apache.spark.ml.feature.VectorAssembler 
import org.apache.spark.ml.regression.LinearRegressionModel 
import org.apache.spark.ml.tuning.{CrossValidator, CrossValidatorModel, ParamGridBuilder} 
import org.apache.spark.sql.functions._ 
import org.apache.spark.sql.{DataFrame, SparkSession}
    .
    .
    .
val (trainingData, testData): (DataFrame, DataFrame) = 
  com.acme.pta.accuracy.Util.splitData(output, testProportion)
    .
    .
    .
val lr = 
  new org.apache.spark.ml.regression.LinearRegression()
  .setSolver("normal").setMaxIter(maxIter)

val pipeline = new Pipeline()
  .setStages(Array(lr))

val paramGrid = new ParamGridBuilder()
  .addGrid(lr.elasticNetParam, Array(0.2, 0.4, 0.8, 0.9))
  .addGrid(lr.regParam, Array(0,6, 0.3, 0.1, 0.01))
  .build()

val cv = new CrossValidator()
  .setEstimator(pipeline)
  .setEvaluator(evaluator)
  .setEstimatorParamMaps(paramGrid)
  .setNumFolds(numFolds) // Use 3+ in practice

val cvModel: CrossValidatorModel = cv.fit(trainingData)

val pipelineModel: PipelineModel = cvModel.bestModel.asInstanceOf[PipelineModel]
val lrModel: LinearRegressionModel = 
  pipelineModel.stages(0).asInstanceOf[LinearRegressionModel]

val modelSummary = lrModel.summary
Holder.log.info("lrModel.summary: " + modelSummary)
try {
  Holder.log.info("feature p values: ")
  // Exception occurs on line below.
  val featuresAndPValues = features.zip(lrModel.summary.pValues)
  featuresAndPValues.foreach(
    (featureAndPValue: (String, Double)) => 
    Holder.log.info(
      "feature: " + featureAndPValue._1 + ": " + featureAndPValue._2))
} catch {
  case _: java.lang.UnsupportedOperationException 
            => Holder.log.error("Cannot compute p-values")
}
Run Code Online (Sandbox Code Playgroud)

我还是得到了UnsupportedOperationException.

异常消息是:

没有可用于此LinearRegressionModel的p值

我还需要做些什么吗?我正在使用

  "org.apache.spark" %% "spark-mllib" % "2.1.1"
Run Code Online (Sandbox Code Playgroud)

该版本是否支持pValues?

Den*_*soi 8

更新

TL;博士

解决方案1

在正常的LinearRegressionp值和其他"正常"统计数据仅在其中一个参数elasticNetParamregParam零时出现.所以你可以改变

.addGrid( lr.elasticNetParam, Array( 0.0 ) )
Run Code Online (Sandbox Code Playgroud)

要么

.addGrid( lr.regParam, Array( 0.0 ) )
Run Code Online (Sandbox Code Playgroud)

解决方案2

制作LinearRegression明确使用的自定义版本

  1. 回归的"正常"求解器.
  2. Cholesky解决者WeightedLeastSquares.

我把这个类作为ml.regression包的扩展.

package org.apache.spark.ml.regression

import scala.collection.mutable

import org.apache.spark.SparkException
import org.apache.spark.internal.Logging
import org.apache.spark.ml.feature.Instance
import org.apache.spark.ml.linalg.{Vector, Vectors}
import org.apache.spark.ml.optim.WeightedLeastSquares
import org.apache.spark.ml.param.{Param, ParamMap, ParamValidators}
import org.apache.spark.ml.util._
import org.apache.spark.mllib.linalg.VectorImplicits._
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, Dataset, Row}
import org.apache.spark.sql.functions._

class CholeskyLinearRegression ( override val uid: String )
    extends Regressor[ Vector, CholeskyLinearRegression, LinearRegressionModel ]
    with LinearRegressionParams with DefaultParamsWritable with Logging {

    import CholeskyLinearRegression._

    def this() = this(Identifiable.randomUID("linReg"))

    def setRegParam(value: Double): this.type = set(regParam, value)
    setDefault(regParam -> 0.0)

    def setFitIntercept(value: Boolean): this.type = set(fitIntercept, value)
    setDefault(fitIntercept -> true)

    def setStandardization(value: Boolean): this.type = set(standardization, value)
    setDefault(standardization -> true)

    def setElasticNetParam(value: Double): this.type = set(elasticNetParam, value)
    setDefault(elasticNetParam -> 0.0)

    def setMaxIter(value: Int): this.type = set(maxIter, value)
    setDefault(maxIter -> 100)

    def setTol(value: Double): this.type = set(tol, value)
    setDefault(tol -> 1E-6)

    def setWeightCol(value: String): this.type = set(weightCol, value)

    def setSolver(value: String): this.type = set(solver, value)
    setDefault(solver -> Auto)

    def setAggregationDepth(value: Int): this.type = set(aggregationDepth, value)
    setDefault(aggregationDepth -> 2)

    override protected def train(dataset: Dataset[_]): LinearRegressionModel = {

        // Extract the number of features before deciding optimization solver.
        val numFeatures = dataset.select(col($(featuresCol))).first().getAs[Vector](0).size
        val w = if (!isDefined(weightCol) || $(weightCol).isEmpty) lit(1.0) else col($(weightCol))

        val instances: RDD[Instance] = 
            dataset
            .select( col( $(labelCol) ), w, col( $(featuresCol) ) )
            .rdd.map {
                case Row(label: Double, weight: Double, features: Vector) =>
                Instance(label, weight, features)
            }

        // if (($(solver) == Auto &&
        //   numFeatures <= WeightedLeastSquares.MAX_NUM_FEATURES) || $(solver) == Normal) {
        // For low dimensional data, WeightedLeastSquares is more efficient since the
        // training algorithm only requires one pass through the data. (SPARK-10668)

        val optimizer = new WeightedLeastSquares( 
            $(fitIntercept), 
            $(regParam),
            elasticNetParam = $(elasticNetParam), 
            $(standardization), 
            true,
            solverType = WeightedLeastSquares.Cholesky, 
            maxIter = $(maxIter), 
            tol = $(tol)
        )

        val model = optimizer.fit(instances)

        val lrModel = copyValues(new LinearRegressionModel(uid, model.coefficients, model.intercept))
        val (summaryModel, predictionColName) = lrModel.findSummaryModelAndPredictionCol()

        val trainingSummary = new LinearRegressionTrainingSummary(
            summaryModel.transform(dataset),
            predictionColName,
            $(labelCol),
            $(featuresCol),
            summaryModel,
            model.diagInvAtWA.toArray,
            model.objectiveHistory
        )

        lrModel
        .setSummary( Some( trainingSummary ) )

        lrModel
    }

    override def copy(extra: ParamMap): CholeskyLinearRegression = defaultCopy(extra)
}

object CholeskyLinearRegression 
    extends DefaultParamsReadable[CholeskyLinearRegression] {

    override def load(path: String): CholeskyLinearRegression = super.load(path)

    val MAX_FEATURES_FOR_NORMAL_SOLVER: Int = WeightedLeastSquares.MAX_NUM_FEATURES

    /** String name for "auto". */
    private[regression] val Auto = "auto"

    /** String name for "normal". */
    private[regression] val Normal = "normal"

    /** String name for "l-bfgs". */
    private[regression] val LBFGS = "l-bfgs"

    /** Set of solvers that LinearRegression supports. */
    private[regression] val supportedSolvers = Array(Auto, Normal, LBFGS)
}
Run Code Online (Sandbox Code Playgroud)

您所要做的就是将其粘贴到项目中的单独文件中,然后在代码中更改LinearRegressionCholeskyLinearRegression.

val lr = new CholeskyLinearRegression() // new LinearRegression()
        .setSolver( "normal" )
        .setMaxIter( maxIter )
Run Code Online (Sandbox Code Playgroud)

它适用于非零参数并给出pValues.测试了下面的params网格.

val paramGrid = new ParamGridBuilder()
        .addGrid( lr.elasticNetParam, Array( 0.2, 0.4, 0.8, 0.9 ) )
        .addGrid( lr.regParam, Array( 0.6, 0.3, 0.1, 0.01 ) )
        .build()
Run Code Online (Sandbox Code Playgroud)

全面调查

我最初认为主要问题是模型没有完全保留.拟合后,训练模型不会被保留CrossValidator.由于内存消耗,这是可以理解的.目前正在就如何解决问题进行辩论.问题在JIRA.

你可以在评论部分看到我试图从最佳模型中提取参数,以便再次运行它.然后我发现模型摘要是好的,它只是一些参数的diagInvAtWa长度为1,基本上为零.

对于岭回归或Tikhonov正则化(elasticNet = 0)和任何regParampValues和其他"正常"统计可以计算,但对于Lasso方法和介于两者之间(弹性网)不.同样regParam = 0如下:elasticNet计算任何pValues.

这是为什么

LinearRegression 使用加权最小二乘优化器进行"正常"求解器solverType = WeightedLeastSquares.Auto.此优化器有两个解算器选项:QuasiNewtonCholesky.前者选择只有当regParamelasticNetParam是非零.

val solver = if (
    ( solverType == WeightedLeastSquares.Auto && 
        elasticNetParam != 0.0 && 
        regParam != 0.0 ) ||
    ( solverType == WeightedLeastSquares.QuasiNewton ) ) {

    ...
    new QuasiNewtonSolver(fitIntercept, maxIter, tol, effectiveL1RegFun)
} else {
    new CholeskySolver
}
Run Code Online (Sandbox Code Playgroud)

因此,在您的参数电网QuasiNewtonSolver将始终使用,因为没有的组合regParamelasticNetParam其中一人是零.

我们知道,为了得到pValues和其他"正常"统计数据,如t统计量或标准.系数误差矩阵的对角线(A ^ T*W*A)^ - 1(diagInvAtWA)不能是只有一个零的矢量.该条件在pValues的定义中设定.

diagInvAtWA是包装上三角矩阵(solution.aaInv)的对角元素的向量.

val diagInvAtWA = solution.aaInv.map { inv => ...
Run Code Online (Sandbox Code Playgroud)

因为Cholesky solver它是计算QuasiNewton 不是.第二个参数NormalEquationSolution是此矩阵.

从技术上讲,您可以制作自己的LinearRegression版本

再生产

在这个例子中,我使用sample_linear_regression_data.txt这里的数据.

完整的复制代码

import org.apache.spark._

import org.apache.spark.ml.{Pipeline, PipelineModel} 
import org.apache.spark.ml.evaluation.{RegressionEvaluator, BinaryClassificationEvaluator}
import org.apache.spark.ml.feature.VectorAssembler 
import org.apache.spark.ml.regression.{LinearRegressionModel, LinearRegression}
import org.apache.spark.ml.tuning.{CrossValidator, CrossValidatorModel, ParamGridBuilder} 
import org.apache.spark.sql.functions._ 
import org.apache.spark.sql.{DataFrame, SparkSession}
import org.apache.spark.ml.param.ParamMap

object Main {

    def main( args: Array[ String ] ): Unit = {

        val spark =
            SparkSession
            .builder()
            .appName( "SO" )
            .master( "local[*]" )
            .config( "spark.driver.host", "localhost" )
            .getOrCreate()

        import spark.implicits._

        val data = 
            spark
            .read
            .format( "libsvm" )
            .load( "./sample_linear_regression_data.txt" )

        val Array( training, test ) = 
            data
            .randomSplit( Array( 0.9, 0.1 ), seed = 12345 )

        val maxIter = 10;

        val lr = new LinearRegression()
            .setSolver( "normal" )
            .setMaxIter( maxIter )

        val paramGrid = new ParamGridBuilder()
            // .addGrid( lr.elasticNetParam, Array( 0.2, 0.4, 0.8, 0.9 ) )
            .addGrid( lr.elasticNetParam, Array( 0.0 ) )
            .addGrid( lr.regParam, Array( 0.6, 0.3, 0.1, 0.01 ) )
            .build()

        val pipeline = new Pipeline()
            .setStages( Array( lr ) )

        val cv = new CrossValidator()
            .setEstimator( pipeline )
            .setEvaluator( new RegressionEvaluator )
            .setEstimatorParamMaps( paramGrid )
            .setNumFolds( 2 )  // Use 3+ in practice

        val cvModel = 
            cv
            .fit( training )

        val pipelineModel: PipelineModel = 
            cvModel
            .bestModel
            .asInstanceOf[ PipelineModel ]

        val lrModel: LinearRegressionModel = 
            pipelineModel
            .stages( 0 )
            .asInstanceOf[ LinearRegressionModel ]

        // Technically there is a way to use exact ParamMap
        // to build a new LR but for the simplicity I'll 
        // get and set them explicitly

        // lrModel.params.foreach( ( param ) => {

        //     println( param )
        // } )

        // val bestLr = new LinearRegression()
        //     .setSolver( "normal" )
        //     .setMaxIter( maxIter )
        //     .setRegParam( lrModel.getRegParam )
        //     .setElasticNetParam( lrModel.getElasticNetParam )

        // val bestLrModel = bestLr.fit( training )

        val modelSummary = 
            lrModel
            .summary

        println( "lrModel pValues: " + modelSummary.pValues.mkString( ", " ) )

        spark.stop()
    }
}
Run Code Online (Sandbox Code Playgroud)

原版的

有三种解算器算法可用:

  • l-bfgs- 有限记忆Broyden-Fletcher-Goldfarb-Shanno算法,这是一种有限记忆的准牛顿优化方法.
  • normal- 使用正规方程作为线性回归问题的解析解.它基本上是加权最小二乘法或重加权最小二乘法.
  • auto - 自动选择求解器算法.在可能的情况下将使用正规方程求解器,但这将在需要时自动回退到迭代优化方法

coefficientStandardErrors,tValues并且pValues使用"通常"解算器时,因为它们都是基于仅可diagInvAtWA对角矩阵的(A ^ T*W*A)^ - - 1.

  • 我有这个问题,但在 pyspark 中。即使我设置了 ``solver='normal'`` 和 ``regParam=0`` 我仍然得到“No Std. Error of coefficients available for this LinearRegressionModel”。有没有办法让 Cholesky 求解器在 pyspark 中工作? (2认同)