numpy/scipy 中非线性函数的数值梯度

sta*_*ane 4 python optimization numpy scipy numerical-methods

我正在尝试在 numpy 中实现数值梯度计算,以用作 cyiopt 中梯度的回调函数。我对 numpy 梯度函数的理解是,它应该返回基于有限不同近似值在某个点计算的梯度。

我不明白如何用这个模块实现非线性函数的梯度。给出的示例问题似乎是一个线性函数。

>>> f = np.array([1, 2, 4, 7, 11, 16], dtype=np.float)
>>> np.gradient(f)
array([ 1. ,  1.5,  2.5,  3.5,  4.5,  5. ])
>>> np.gradient(f, 2)
array([ 0.5 ,  0.75,  1.25,  1.75,  2.25,  2.5 ])
Run Code Online (Sandbox Code Playgroud)

我的代码片段如下:

import numpy as np

# Hock & Schittkowski test problem #40
x = np.mgrid[0.75:0.85:0.01, 0.75:0.8:0.01, 0.75:0.8:0.01, 0.75:0.8:0.01]
# target is evaluation at x = [0.8, 0.8, 0.8, 0.8]
f = -x[0] * x[1] * x[2] * x[3]
g = np.gradient(f)

print g
Run Code Online (Sandbox Code Playgroud)

另一个缺点是我必须在几个点评估 x (并且它在几个点返回梯度) numpy/scipy 中是否有更好的选择可以在单个对梯度进行数值评估,以便我可以实现这个作为回调函数?

sas*_*cha 6

首先,一些警告:

  • 数值优化很难做好
  • iopt是非常复杂的软件
    • 将 ipopt 与数值微分结合起来听起来像是你在自找麻烦,但这当然取决于你的问题
    • ipopt 几乎总是基于自动微分工具而不是数值微分

还有更多:

  • 因为这是一项复杂的任务,并且 python + ipopt 的状态不如其他一些语言(例如julia + JuMP)那么好,所以需要一些工作

还有一些替代方案:

  • 使用pyomo包装 ipopt 并具有自动微分功能
  • 使用casadi,它也包装了ipopt并具有自动微分功能
  • 使用autograd自动计算 numpy 代码子集的梯度
    • 然后使用 cyipopt 添加这些
  • scipy.minimize 与求解器 SLSQP 或 COBYLA可以为您做所有事情(SLSQP 可以使用等式和不等式约束;COBYLA 仅不等式约束,其中通过x >= y+模拟等式约束x <= y 可以工作)

使用您的工具完成您的任务

您的完整示例问题在非线性编程代码的测试示例中定义:

在此输入图像描述

这是一些基于数值微分的代码,用于解决您的测试问题,包括官方设置(函数、梯度、起点、边界……)

import numpy as np
import scipy.sparse as sps
import ipopt
from scipy.optimize import approx_fprime


class Problem40(object):
    """ # Hock & Schittkowski test problem #40
            Basic structure  follows:
            - cyipopt example from https://pythonhosted.org/ipopt/tutorial.html#defining-the-problem
            - which follows ipopt's docs from: https://www.coin-or.org/Ipopt/documentation/node22.html
            Changes:
            - numerical-diff using scipy for function & constraints
            - removal of hessian-calculation
              - we will use limited-memory approximation
                - ipopt docs: https://www.coin-or.org/Ipopt/documentation/node31.html
              - (because i'm too lazy to reason about the math; lagrange and co.)
    """
    def __init__(self):
        self.num_diff_eps = 1e-8  # maybe tuning needed!

    def objective(self, x):
        # callback for objective
        return -np.prod(x)  # -x1 x2 x3 x4

    def constraint_0(self, x):
        return np.array([x[0]**3 + x[1]**2 -1])

    def constraint_1(self, x):
        return np.array([x[0]**2 * x[3] - x[2]])

    def constraint_2(self, x):
        return np.array([x[3]**2 - x[1]])

    def constraints(self, x):
        # callback for constraints
        return np.concatenate([self.constraint_0(x),
                               self.constraint_1(x),
                               self.constraint_2(x)])

    def gradient(self, x):
        # callback for gradient
        return approx_fprime(x, self.objective, self.num_diff_eps)

    def jacobian(self, x):
        # callback for jacobian
        return np.concatenate([
            approx_fprime(x, self.constraint_0, self.num_diff_eps),
            approx_fprime(x, self.constraint_1, self.num_diff_eps),
            approx_fprime(x, self.constraint_2, self.num_diff_eps)])

    def hessian(self, x, lagrange, obj_factor):
        return False  # we will use quasi-newton approaches to use hessian-info

    # progress callback
    def intermediate(
            self,
            alg_mod,
            iter_count,
            obj_value,
            inf_pr,
            inf_du,
            mu,
            d_norm,
            regularization_size,
            alpha_du,
            alpha_pr,
            ls_trials
            ):

        print("Objective value at iteration #%d is - %g" % (iter_count, obj_value))

# Remaining problem definition; still following official source:
# http://www.ai7.uni-bayreuth.de/test_problem_coll.pdf

# start-point -> infeasible
x0 = [0.8, 0.8, 0.8, 0.8]

# variable-bounds -> empty => np.inf-approach deviates from cyipopt docs!
lb = [-np.inf, -np.inf, -np.inf, -np.inf]
ub = [np.inf, np.inf, np.inf, np.inf]

# constraint bounds -> c == 0 needed -> both bounds = 0
cl = [0, 0, 0]
cu = [0, 0, 0]

nlp = ipopt.problem(
            n=len(x0),
            m=len(cl),
            problem_obj=Problem40(),
            lb=lb,
            ub=ub,
            cl=cl,
            cu=cu
            )

# IMPORTANT: need to use limited-memory / lbfgs here as we didn't give a valid hessian-callback
nlp.addOption(b'hessian_approximation', b'limited-memory')
x, info = nlp.solve(x0)
print(x)
print(info)

# CORRECT RESULT & SUCCESSFUL STATE
Run Code Online (Sandbox Code Playgroud)

输出:

******************************************************************************
This program contains Ipopt, a library for large-scale nonlinear optimization.
 Ipopt is released as open source code under the Eclipse Public License (EPL).
         For more information visit http://projects.coin-or.org/Ipopt
******************************************************************************

This is Ipopt version 3.12.8, running with linear solver mumps.
NOTE: Other linear solvers might be more efficient (see Ipopt documentation).

Number of nonzeros in equality constraint Jacobian...:       12
Number of nonzeros in inequality constraint Jacobian.:        0
Number of nonzeros in Lagrangian Hessian.............:        0

Total number of variables............................:        4
                     variables with only lower bounds:        0
                variables with lower and upper bounds:        0
                     variables with only upper bounds:        0
Total number of equality constraints.................:        3
Total number of inequality constraints...............:        0
        inequality constraints with only lower bounds:        0
   inequality constraints with lower and upper bounds:        0
        inequality constraints with only upper bounds:        0

Objective value at iteration #0 is - -0.4096
iter    objective    inf_pr   inf_du lg(mu)  ||d||  lg(rg) alpha_du alpha_pr  ls
   0 -4.0960000e-01 2.88e-01 2.53e-02   0.0 0.00e+00    -  0.00e+00 0.00e+00   0
Objective value at iteration #1 is - -0.255391
   1 -2.5539060e-01 1.28e-02 2.98e-01 -11.0 2.51e-01    -  1.00e+00 1.00e+00h  1
Objective value at iteration #2 is - -0.249299
   2 -2.4929898e-01 8.29e-05 3.73e-01 -11.0 7.77e-03    -  1.00e+00 1.00e+00h  1
Objective value at iteration #3 is - -0.25077
   3 -2.5076955e-01 1.32e-03 3.28e-01 -11.0 2.46e-02    -  1.00e+00 1.00e+00h  1
Objective value at iteration #4 is - -0.250025
   4 -2.5002535e-01 4.06e-05 1.93e-02 -11.0 4.65e-03    -  1.00e+00 1.00e+00h  1
Objective value at iteration #5 is - -0.25
   5 -2.5000038e-01 6.57e-07 1.70e-04 -11.0 5.46e-04    -  1.00e+00 1.00e+00h  1
Objective value at iteration #6 is - -0.25
   6 -2.5000001e-01 2.18e-08 2.20e-06 -11.0 9.69e-05    -  1.00e+00 1.00e+00h  1
Objective value at iteration #7 is - -0.25
   7 -2.5000000e-01 3.73e-12 4.42e-10 -11.0 1.27e-06    -  1.00e+00 1.00e+00h  1

Number of Iterations....: 7

                                   (scaled)                 (unscaled)
Objective...............:  -2.5000000000225586e-01   -2.5000000000225586e-01
Dual infeasibility......:   4.4218750883118219e-10    4.4218750883118219e-10
Constraint violation....:   3.7250202922223252e-12    3.7250202922223252e-12
Complementarity.........:   0.0000000000000000e+00    0.0000000000000000e+00
Overall NLP error.......:   4.4218750883118219e-10    4.4218750883118219e-10


Number of objective function evaluations             = 8
Number of objective gradient evaluations             = 8
Number of equality constraint evaluations            = 8
Number of inequality constraint evaluations          = 0
Number of equality constraint Jacobian evaluations   = 8
Number of inequality constraint Jacobian evaluations = 0
Number of Lagrangian Hessian evaluations             = 0
Total CPU secs in IPOPT (w/o function evaluations)   =      0.016
Total CPU secs in NLP function evaluations           =      0.000

EXIT: Optimal Solution Found.
[ 0.79370053  0.70710678  0.52973155  0.84089641]
{'x': array([ 0.79370053,  0.70710678,  0.52973155,  0.84089641]), 'g': array([  3.72502029e-12,  -3.93685085e-13,   5.86974913e-13]), 'obj_val': -0.25000000000225586, 'mult_g': array([ 0.49999999, -0.47193715,  0.35355339]), 'mult_x_L': array([ 0.,  0.,  0.,  0.]), 'mult_x_U': array([ 0.,  0.,  0.,  0.]), 'status': 0, 'status_msg': b'Algorithm terminated successfully at a locally optimal point, satisfying the convergence tolerances (can be specified by options).'}
Run Code Online (Sandbox Code Playgroud)

关于代码的注释

  • 我们使用scipy 的 approx_fprime ,它基本上是为scipy.optimize中所有基于梯度的优化器添加的
  • 正如消息来源所述;我没有关心 ipopt 对 hessian 的需要,我们使用 ipopts hessian 近似
  • 我确实忽略了 ipopts 对雅可比行列式约束的稀疏结构的需要
    • 默认假设:使用默认的粗麻布结构是下三角矩阵,我不会对这里可能发生的情况提供任何保证(性能不佳与破坏一切)