Kei*_*iku 2 python logging xgboost
我试图通过 将xgb.train
XGBoost的输出保存为日志文件logging
,但我无法记录输出。我怎样才能记录它?我试图参考现有的 Stackoverflow 问题,但这是不可能的。我希望你用一个具体的样本来展示它。
import sys
import logging
# ---------------------------------------------- #
# Some logging settings
# ---------------------------------------------- #
import xgboost as xgb
import numpy as np
from sklearn.model_selection import KFold
from sklearn.datasets import load_digits
rng = np.random.RandomState(31337)
print("Zeros and Ones from the Digits dataset: binary classification")
digits = load_digits(2)
y = digits['target']
X = digits['data']
kf = KFold(n_splits=2, shuffle=True, random_state=rng)
for train_index, test_index in kf.split(X):
param = {'max_depth':2, 'eta':0.3, 'silent':1, 'objective':'binary:logistic' }
dtrain = xgb.DMatrix(X[train_index], y[train_index])
dtest = xgb.DMatrix(X[test_index], y[test_index])
# specify validations set to watch performance
watchlist = [(dtest,'eval'), (dtrain,'train')]
num_round = 2
bst = xgb.train(param, dtrain, num_round, watchlist)
# I want to record this output.
# Zeros and Ones from the Digits dataset: binary classification
# [0] eval-error:0.011111 train-error:0.011111
# [1] eval-error:0.011111 train-error:0.005556
# [0] eval-error:0.016667 train-error:0.005556
# [1] eval-error:0.005556 train-error:0
Run Code Online (Sandbox Code Playgroud)
小智 5
xgboost 将其日志直接打印到标准输出中,您无法更改其行为。但callbacks
参数xgb.train
有能力记录结果与内部打印相同的时间。
以下代码是使用回调将 xgboost 日志记录到记录器的示例。
log_evaluation()
返回一个从 xgboost 内部调用的回调函数,您可以将回调函数添加到callbacks
from logging import getLogger, basicConfig, INFO
import numpy as np
import xgboost as xgb
from sklearn.datasets import load_digits
from sklearn.model_selection import KFold
# Some logging settings
basicConfig(level=INFO)
logger = getLogger(__name__)
def log_evaluation(period=1, show_stdv=True):
"""Create a callback that logs evaluation result with logger.
Parameters
----------
period : int
The period to log the evaluation results
show_stdv : bool, optional
Whether show stdv if provided
Returns
-------
callback : function
A callback that logs evaluation every period iterations into logger.
"""
def _fmt_metric(value, show_stdv=True):
"""format metric string"""
if len(value) == 2:
return '%s:%g' % (value[0], value[1])
elif len(value) == 3:
if show_stdv:
return '%s:%g+%g' % (value[0], value[1], value[2])
else:
return '%s:%g' % (value[0], value[1])
else:
raise ValueError("wrong metric value")
def callback(env):
if env.rank != 0 or len(env.evaluation_result_list) == 0 or period is False:
return
i = env.iteration
if i % period == 0 or i + 1 == env.begin_iteration or i + 1 == env.end_iteration:
msg = '\t'.join([_fmt_metric(x, show_stdv) for x in env.evaluation_result_list])
logger.info('[%d]\t%s\n' % (i, msg))
return callback
rng = np.random.RandomState(31337)
print("Zeros and Ones from the Digits dataset: binary classification")
digits = load_digits(2)
y = digits['target']
X = digits['data']
kf = KFold(n_splits=2, shuffle=True, random_state=rng)
for train_index, test_index in kf.split(X):
param = {'max_depth': 2, 'eta': 0.3, 'silent': 1, 'objective': 'binary:logistic'}
dtrain = xgb.DMatrix(X[train_index], y[train_index])
dtest = xgb.DMatrix(X[test_index], y[test_index])
# specify validations set to watch performance
watchlist = [(dtest, 'eval'), (dtrain, 'train')]
num_round = 2
# add logger
callbacks = [log_evaluation(1, True)]
bst = xgb.train(param, dtrain, num_round, watchlist, callbacks=callbacks)
Run Code Online (Sandbox Code Playgroud)
小智 5
接受的解决方案不适用于 xgboost 版本 1.3 及更高版本。(在1.6.1上测试),由于以下原因:
在XGBoost 1.3中,为Python包设计了一个新的回调接口。
(来源:https ://xgboost.readthedocs.io/en/latest/python/callbacks.html )
您可以通过定义自定义日志记录回调并将其作为参数传递给 xgb.train 来实现 xgboost.train 的 python 日志记录,如下所示:
import logging
logger = logging.getLogger(__name__)
import xgboost
class XGBLogging(xgboost.callback.TrainingCallback):
"""log train logs to file"""
def __init__(self, epoch_log_interval=100):
self.epoch_log_interval = epoch_log_interval
def after_iteration(self, model, epoch, evals_log):
if epoch % self.epoch_log_interval == 0:
for data, metric in evals_log.items():
metrics = list(metric.keys())
metrics_str = ""
for m_key in metrics:
metrics_str = metrics_str + f"{m_key}: {metric[m_key][-1]}"
logger.info(f"Epoch: {epoch}, {data}: {metrics_str}")
# False to indicate training should not stop.
return False
model = xgboost.train(
xgboost_parms,
dtrain=dtrain,
evals=[(dtrain,"train"),(dvalid,"valid")]
callbacks=[XGBLogging(epoch_log_interval=100)]
)
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
2627 次 |
最近记录: |