在Clojure中评估AST(抽象语法树)

Boj*_*vat 5 clojure genetic-programming

如何评估AST具有更好的性能?目前我们创建AST作为树,其中叶节点(终端)是一个参数的函数 - 关键字及其值的映射.终端用关键字表示,而功能(非终端)可以是用户(或clojure)定义的功能.完全增长方法从非终端和终端创建树:

(defn full-growth
  "Creates individual by full growth method: root and intermediate nodes are
   randomly selected from non-terminals Ns,
   leaves at depth depth are randomly selected from terminals Ts"
  [Ns Ts arity-fn depth]
  (if (<= depth 0)
    (rand-nth Ts)
    (let [n (rand-nth Ns)]
      (cons n (repeatedly (arity-fn n) #(full-growth Ns Ts arity-fn(dec depth)))))))
Run Code Online (Sandbox Code Playgroud)

生成AST的示例:

=> (def ast (full-growth [+ *] [:x] {+ 2, * 2} 3))
#'gpr.symb-reg/ast
=> ast
(#object[clojure.core$_STAR_ 0x6fc90beb "clojure.core$_STAR_@6fc90beb"]
 (#object[clojure.core$_STAR_ 0x6fc90beb "clojure.core$_STAR_@6fc90beb"]
  (#object[clojure.core$_STAR_ 0x6fc90beb "clojure.core$_STAR_@6fc90beb"]
   :x
   :x)
  (#object[clojure.core$_PLUS_ 0x1b00ba1a "clojure.core$_PLUS_@1b00ba1a"]
   :x
   :x))
 (#object[clojure.core$_PLUS_ 0x1b00ba1a "clojure.core$_PLUS_@1b00ba1a"]
  (#object[clojure.core$_PLUS_ 0x1b00ba1a "clojure.core$_PLUS_@1b00ba1a"]
   :x
   :x)
  (#object[clojure.core$_PLUS_ 0x1b00ba1a "clojure.core$_PLUS_@1b00ba1a"]
   :x
   :x)))
Run Code Online (Sandbox Code Playgroud)

,相当于

`(~* (~* (~* ~:x ~:x) (~+ ~:x ~:x)) (~+ (~+ ~:x ~:x) (~+ ~:x ~:x)))

(def ast `(~* (~* (~* ~:x ~:x) (~+ ~:x ~:x)) (~+ (~+ ~:x ~:x) (~+ ~:x ~:x))))
Run Code Online (Sandbox Code Playgroud)

我们可以编写直接评估此AST的fn:

(defn ast-fn
  [{x :x}]
  (* (* (* x x) (+ x x)) (+ (+ x x) (+ x x))))

=> (ast-fn {:x 3})
648
Run Code Online (Sandbox Code Playgroud)

我们有两种基于AST创建函数的方法,一种是在apply和map的帮助下,另一种是在comp和juxt的帮助下:

(defn tree-apply
  "((+ :x :x) in) => (apply + [(:x in) (:x in))]"
  ([tree] (fn [in] (tree-apply tree in)))
  ([tree in]
    (if (sequential? tree)
    (apply (first tree) (map #(tree-apply % in) (rest tree)))
    (tree in))))
#'gpr.symb-reg/tree-apply

=> (defn tree-comp
     "(+ :x :x) => (comp (partial apply +) (juxt :x :x))"
     [tree]
     (if (sequential? tree)
       (comp (partial apply (first tree)) (apply juxt (map tree-comp (rest tree))))
       tree))
#'gpr.symb-reg/tree-comp


=> ((tree-apply ast) {:x 3})
648

=> ((tree-comp ast) {:x 3})
648
Run Code Online (Sandbox Code Playgroud)

使用时间fn,我们测量执行函数的时间超过测试用例:

=> (defn timing
     [f interval]
     (let [values (into [] (map (fn[x] {:x x})) interval)]
       (time (into [] (map f) values)))
       true)

=> (timing ast-fn (range -10 10 0.0001))
"Elapsed time: 37.184583 msecs"
true

=> (timing (tree-comp ast) (range -10 10 0.0001))
"Elapsed time: 328.961435 msecs"
true

=> (timing (tree-apply ast) (range -10 10 0.0001))
"Elapsed time: 829.483138 msecs"
true
Run Code Online (Sandbox Code Playgroud)

正如您所看到的,直接函数(ast-fn),树补偿生成函数和树应用生成函数之间的性能存在巨大差异.

有更好的方法吗?

编辑: madstap的答案看起来很有希望.我对他的解决方案进行了一些修改(终端也可以是其他一些函数,而不仅仅是关键字,就像常量函数一样,不管输入如何都会不断返回值):

(defn c [v] (fn [_] v))
(def c1 (c 1))

(defmacro full-growth-macro
     "Creates individual by full growth method: root and intermediate nodes are
      randomly selected from non-terminals Ns,
      leaves at depth depth are randomly selected from terminals Ts"
     [Ns Ts arity-fn depth]
     (let [tree (full-growth Ns Ts arity-fn depth)
           val-map (gensym)
           ast2f (fn ast2f [ast] (if (sequential? ast)
                   (list* (first ast) (map #(ast2f %1) (rest ast)))
                   (list ast val-map)))
           new-tree (ast2f tree)]
       `{:ast '~tree
         :fn (fn [~val-map] ~new-tree)}))
Run Code Online (Sandbox Code Playgroud)

现在,创建ast-m(使用常量c1作为终端)和相关的ast-m-fn:

=> (def ast-m (full-growth-macro [+ *] [:x c1] {+ 2 * 2} 3))
#'gpr.symb-reg/ast-m
=> ast-m
{:fn
 #object[gpr.symb_reg$fn__20851 0x31802c12 "gpr.symb_reg$fn__20851@31802c12"],
 :ast
 (+
  (* (+ :x :x) (+ :x c1))
  (* (* c1 c1) (* :x c1)))}
=> (defn ast-m-fn
     [{x :x}]
     (+
     (* (+ x x) (+ x 1))
     (* (* 1 1) (* x 1))))
#'gpr.symb-reg/ast-m-fn
Run Code Online (Sandbox Code Playgroud)

时间看起来非常相似:

=> (timing (:fn ast-m) (range -10 10 0.0001))
"Elapsed time: 58.478611 msecs"
true
=> (timing (:fn ast-m) (range -10 10 0.0001))
"Elapsed time: 53.495922 msecs"
true
=> (timing ast-m-fn (range -10 10 0.0001))
"Elapsed time: 74.412357 msecs"
true
=> (timing ast-m-fn (range -10 10 0.0001))
"Elapsed time: 59.556227 msecs"
true
Run Code Online (Sandbox Code Playgroud)

mad*_*tap 1

使用宏来编写相当于ast-fn.

(ns foo.core
  (:require
   [clojure.walk :as walk]))

(defmacro ast-macro [tree]
  (let [val-map (gensym)
        new-tree (walk/postwalk (fn [x]
                                  (if (keyword? x)
                                    (list val-map x)
                                    x))
                                (eval tree))]
    `(fn [~val-map] ~new-tree)))
Run Code Online (Sandbox Code Playgroud)

在我的机器上,这接近ast-fn. 45 毫秒至 50 毫秒。它会进行更多查找,但这可以通过一些额外的修补来解决。

编辑:我对此进行了更多思考。eval在宏展开时使用参数将限制您如何使用它(参数不能是本地参数)。制作full-growth一个宏可以更好地工作。就像 amalloy 所说,这完全取决于你想在运行时与宏展开时做什么。

(defmacro full-growth-macro
  "Creates individual by full growth method: root and intermediate nodes are
   randomly selected from non-terminals Ns,
   leaves at depth depth are randomly selected from terminals Ts"
  [Ns Ts arity-fn depth]
  (let [tree (full-growth Ns Ts arity-fn depth)
        val-map (gensym)
        new-tree (walk/postwalk (fn [x]
                                  (if (keyword? x)
                                    (list val-map x)
                                    x))
                                tree)]
    `{:ast '~tree
      :fn (fn [~val-map] ~new-tree)}))
Run Code Online (Sandbox Code Playgroud)