use*_*262 2 python colors matplotlib python-2.7
我从 matplotlib 自定义 cmap 示例页面借用了一个示例:
https://matplotlib.org/examples/pylab_examples/custom_cmap.html
这将生成具有不同数量的着色轮廓的相同图像,如 bin 数量中指定的n_bins
:
https://matplotlib.org/_images/custom_cmap_00.png
但是,我不仅对 bin 的数量感兴趣,而且对颜色值之间的特定断点感兴趣。例如,nbins=6
在右上角的子图中,我如何指定 bin 的范围,以便在这些自定义区域中填充阴影:
n_bins_ranges = ([-10,-5],[-5,-2],[-2,-0.5],[-0.5,2.5],[2.5,7.5],[7.5,10])
Run Code Online (Sandbox Code Playgroud)
是否也可以指定断点的包含性?例如,我想在 -2 和 0.5 之间的范围内指定它是-2 < x <= -0.5
还是-2 <= x < -0.5
.
编辑下面的答案:
使用下面接受的答案,这里是绘制每个步骤的代码,包括最终在中点添加自定义颜色条刻度。请注意,由于我是新用户,因此无法发布图片。
设置数据和 6 个颜色箱:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
# Make some illustrative fake data:
x = np.arange(0, np.pi, 0.1)
y = np.arange(0, 2*np.pi, 0.1)
X, Y = np.meshgrid(x, y)
Z = np.cos(X) * np.sin(Y) * 10
# Create colormap with 6 discrete bins
colors = [(1, 0, 0), (0, 1, 0), (0, 0, 1)] # R -> G -> B
n_bin = 6
cmap_name = 'my_list'
cm = matplotlib.colors.LinearSegmentedColormap.from_list(
cmap_name, colors, N=n_bin)
Run Code Online (Sandbox Code Playgroud)
绘制不同的选项:
# Set up 4 subplots
fig, axs = plt.subplots(2, 2, figsize=(6, 9))
fig.subplots_adjust(left=0.02, bottom=0.06, right=0.95, top=0.94, wspace=0.05)
# Plot 6 bin figure
im = axs[0,0].imshow(Z, interpolation='nearest', origin='lower', cmap=cm)
axs[0,0].set_title("Original 6 Bin")
fig.colorbar(im, ax=axs[0,0])
# Change the break points
n_bins_ranges = [-10,-5,-2,-0.5,2.5,7.5,10]
norm = matplotlib.colors.BoundaryNorm(n_bins_ranges, len(n_bins_ranges))
im = axs[0,1].imshow(Z, interpolation='nearest', origin='lower', cmap=cm, norm=norm)
axs[0,1].set_title("Custom Break Points")
fig.colorbar(im, ax=axs[0,1])
# Arrange color labels by data interval (not colors)
im = axs[1,0].imshow(Z, interpolation='nearest', origin='lower', cmap=cm, norm=norm)
axs[1,0].set_title("Linear Color Distribution")
fig.colorbar(im, ax=axs[1,0], spacing="proportional")
# Provide custom labels at color midpoints
# And change inclusive equality by adding arbitrary small value
n_bins_ranges_arr = np.asarray(n_bins_ranges)+1e-9
norm = matplotlib.colors.BoundaryNorm(n_bins_ranges, len(n_bins_ranges))
n_bins_ranges_midpoints = (n_bins_ranges_arr[1:] + n_bins_ranges_arr[:-1])/2.0
im = axs[1,1].imshow(Z, interpolation='nearest', origin='lower', cmap=cm ,norm=norm)
axs[1,1].set_title("Midpoint Labels\n Switched Equal Sign")
cbar=fig.colorbar(im, ax=axs[1,1], spacing="proportional",
ticks=n_bins_ranges_midpoints.tolist())
cbar.ax.set_yticklabels(['Red', 'Brown', 'Green 1','Green 2','Gray Blue','Blue'])
plt.show()
Run Code Online (Sandbox Code Playgroud)
您可以BoundaryNorm
按如下方式使用 a :
import matplotlib.pyplot as plt
import matplotlib.colors
import numpy as np
x = np.arange(0, np.pi, 0.1)
y = np.arange(0, 2*np.pi, 0.1)
X, Y = np.meshgrid(x, y)
Z = np.cos(X) * np.sin(Y) * 10
colors = [(1, 0, 0), (0, 1, 0), (0, 0, 1)] # R -> G -> B
n_bin = 6 # Discretizes the interpolation into bins
n_bins_ranges = [-10,-5,-2,-0.5,2.5,7.5,10]
cmap_name = 'my_list'
fig, ax = plt.subplots()
# Create the colormap
cm = matplotlib.colors.LinearSegmentedColormap.from_list(
cmap_name, colors, N=n_bin)
norm = matplotlib.colors.BoundaryNorm(n_bins_ranges, len(n_bins_ranges))
# Fewer bins will result in "coarser" colomap interpolation
im = ax.imshow(Z, interpolation='nearest', origin='lower', cmap=cm, norm=norm)
ax.set_title("N bins: %s" % n_bin)
fig.colorbar(im, ax=ax)
plt.show()
Run Code Online (Sandbox Code Playgroud)
或者,如果您想要成比例的间距,即颜色之间的距离根据它们的值,
fig.colorbar(im, ax=ax, spacing="proportional")
Run Code Online (Sandbox Code Playgroud)
正如边界规范文档所述
如果
b[i] <= v < b[i+1]
那么 v 映射到颜色 j;当 i 从 0 变化到 len(boundaries)-2 时,j 从 0 变化到 ncolors-1。
所以颜色总是被选择为-2 <= x < -0.5
,为了在另一边获得等号,你需要提供类似的东西n_bins_ranges = np.array([-10,-5,-2,-0.5,2.5,7.5,10])-1e-9