将 4D numpy 数组重塑为 3D

Ale*_*lov 4 python numpy reshape

我有一个具有以下维度的 numpy 数组 - (256, 128, 4, 200) - 基本上前两个可以形成图像,第三个是通道,第四个是帧(“时间实例”)。如何重塑阵列,使帧一个接一个地“堆叠”,换句话说,阵列的形状为 (256, 128*200, 4)?连接是按帧进行的很重要,因此帧中值的顺序被保留。

本质上,需要的是优化:

data_new = data[:, :, :, 0]
for i in range(1, data.shape[3]):
    data_new = np.concatenate((data_new, data[:, :, :, i]), axis=1)
Run Code Online (Sandbox Code Playgroud)

Div*_*kar 7

置换轴np.transpose并重塑 -

m,n = data.shape[::2]
data_new = data.transpose(0,3,1,2).reshape(m,-1,n)
Run Code Online (Sandbox Code Playgroud)

或者roll-axis重塑——

data_new = np.rollaxis(data,3,1).reshape(m,-1,n)
Run Code Online (Sandbox Code Playgroud)

运行时测试 -

In [40]: data = np.random.randint(0,9,(256,128,4,200))

In [46]: %%timeit
    ...: data_new = data[:, :, :, 0]
    ...: for i in range(1, data.shape[3]):
    ...:     data_new = np.concatenate((data_new, data[:, :, :, i]), axis=1)
    ...: 
1 loop, best of 3: 3.56 s per loop

In [49]: m,n = data.shape[::2]

In [50]: %timeit data.transpose(0,3,1,2).reshape(m,-1,n)
10 loops, best of 3: 47.1 ms per loop

In [51]: %timeit np.rollaxis(data,3,1).reshape(m,-1,n)
10 loops, best of 3: 46.8 ms per loop
Run Code Online (Sandbox Code Playgroud)

因此,76x+加速是向量化的收益。