如何在pandas中合并/组合列?

mat*_*ati 5 python merge multiple-columns dataframe pandas

我有一个包含4列的(example-)数据框:

data = {'A': ['a', 'b', 'c', 'd', 'e', 'f'],
    'B': [42, 52, np.nan, np.nan, np.nan, np.nan],  
    'C': [np.nan, np.nan, 31, 2, np.nan, np.nan],
    'D': [np.nan, np.nan, np.nan, np.nan, 62, 70]}
df = pd.DataFrame(data, columns = ['A', 'B', 'C', 'D'])

    A   B       C       D
0   a   42.0    NaN     NaN
1   b   52.0    NaN     NaN
2   c   NaN     31.0    NaN
3   d   NaN     2.0     NaN
4   e   NaN     NaN     62.0
5   f   NaN     NaN     70.0
Run Code Online (Sandbox Code Playgroud)

我现在想将列B,C和D合并/组合到一个新列E,如下例所示:

data2 = {'A': ['a', 'b', 'c', 'd', 'e', 'f'],
    'E': [42, 52, 31, 2, 62, 70]}
df2 = pd.DataFrame(data2, columns = ['A', 'E'])

    A   E
0   a   42
1   b   52
2   c   31
3   d   2
4   e   62
5   f   70
Run Code Online (Sandbox Code Playgroud)

我在这里发现了一个非常相似的问题,但这会在A列的末尾添加合并的列B,C和D:

0      a
1      b
2      c
3      d
4      e
5      f
6     42
7     52
8     31
9      2
10    62
11    70
dtype: object
Run Code Online (Sandbox Code Playgroud)

感谢帮助.

Zer*_*ero 7

选项1
使用assigndrop

In [644]: cols = ['B', 'C', 'D']

In [645]: df.assign(E=df[cols].sum(1)).drop(cols, 1)
Out[645]:
   A     E
0  a  42.0
1  b  52.0
2  c  31.0
3  d   2.0
4  e  62.0
5  f  70.0
Run Code Online (Sandbox Code Playgroud)

选项2
使用赋值和drop

In [648]: df['E'] = df[cols].sum(1)

In [649]: df = df.drop(cols, 1)

In [650]: df
Out[650]:
   A     E
0  a  42.0
1  b  52.0
2  c  31.0
3  d   2.0
4  e  62.0
5  f  70.0
Run Code Online (Sandbox Code Playgroud)

选项3最近,我喜欢第三种选择.
运用groupby

In [660]: df.groupby(np.where(df.columns == 'A', 'A', 'E'), axis=1).first() #or sum max min
Out[660]:
   A     E
0  a  42.0
1  b  52.0
2  c  31.0
3  d   2.0
4  e  62.0
5  f  70.0

In [661]: df.columns == 'A'
Out[661]: array([ True, False, False, False], dtype=bool)

In [662]: np.where(df.columns == 'A', 'A', 'E')
Out[662]:
array(['A', 'E', 'E', 'E'],
      dtype='|S1')
Run Code Online (Sandbox Code Playgroud)


小智 6

所写的问题要求合并/合并,而不是求和,因此发布此问题是为了帮助找到此答案的人寻求与 combine_first 合并的帮助,这可能有点棘手。

df2 = pd.concat([df["A"], 
             df["B"].combine_first(df["C"]).combine_first(df["D"])], 
            axis=1)
df2.rename(columns={"B":"E"}, inplace=True)
   A     E
0  a  42.0
1  b  52.0
2  c  31.0
3  d  2.0 
4  e  62.0
5  f  70.0
Run Code Online (Sandbox Code Playgroud)

这有什么好纠结的?在这种情况下没有问题 - 但假设您从不同的数据帧中提取 B、C 和 D 值,其中存在 a、b、c、d、e、f 标签,但顺序不一定相同。combine_first() 在索引上对齐,因此您需要在每个 df 引用上添加 set_index() 。

df2 = pd.concat([df.set_index("A", drop=False)["A"], 
             df.set_index("A")["B"]\
             .combine_first(df.set_index("A")["C"])\
             .combine_first(df.set_index("A")["D"]).astype(int)], 
            axis=1).reset_index(drop=True)
df2.rename(columns={"B":"E"}, inplace=True)

   A   E
0  a  42
1  b  52
2  c  31
3  d  2 
4  e  62
5  f  70
Run Code Online (Sandbox Code Playgroud)

  • 这个答案适用于字符串,而不仅仅是数字(与使用“sum()”的那些不同)。 (2认同)