Aar*_*esh 4 java arrays algorithm time-complexity
我尝试在hackerrank中解决一个问题,即找到数组中最大度数的最小子数组的长度.数组的最大度数是具有最大频率的元素的数量.例如,考虑示例{2,2,1,2,3,1,1} min子阵列长度为4,因为2具有最大度,而具有3度的最小子阵列是{2,2, 1,2}
以下是我解决问题的方法
public class FindingMinSubArrayWithDegree {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = sc.nextInt();
}
System.out.println(degreeOfArray(arr));
sc.close();
}
static int degreeOfArray(int[] arr) {
HashMap<Integer, Integer> numbersByDegree = new HashMap<Integer, Integer>();
for (int i = 0; i < arr.length; i++) {
int degree = numbersByDegree.getOrDefault(arr[i], 0);
numbersByDegree.put(arr[i], degree + 1);
}
List<Map.Entry<Integer, Integer>> sortedEntries = sortByValue(numbersByDegree);
int maxDegree = sortedEntries.get(0).getValue();
int[] degreeArr = new int[arr.length] ;
int minSubArrayLength = arr.length;
for (Map.Entry<Integer, Integer> entry : sortedEntries) {
if (entry.getValue() < maxDegree) {
break;
}
boolean startIndexFound = false, endIndexFound = false;
int startIndex = 0, endIndex = 0;
for (int i = 0; i < arr.length; i++) {
if (entry.getKey() == arr[i]) {
if (i - 1 >= 0)
degreeArr[i] = degreeArr[i - 1] + 1;
else
degreeArr[i] = 1;
} else {
if (i - 1 >= 0)
degreeArr[i] = degreeArr[i - 1];
}
if (!startIndexFound && degreeArr[i] == 1) {
startIndex = i;
startIndexFound = true;
}
if (!endIndexFound && degreeArr[i] == entry.getValue()) {
endIndex = i;
endIndexFound = true;
}
if (startIndexFound && endIndexFound)
break;
}
startIndexFound = false; endIndexFound = false;
if ((endIndex - startIndex) < minSubArrayLength) {
minSubArrayLength = endIndex - startIndex;
}
for (int i = 0; i < degreeArr.length; i++)
degreeArr[i] = 0;
}
return minSubArrayLength + 1;
}
private static <K, V extends Comparable<? super V>> List<Map.Entry<K, V>>
sortByValue(Map<K, V> map) {
List<Map.Entry<K, V>> list = new LinkedList<Map.Entry<K, V>>(map.entrySet());
Collections.sort( list, new Comparator<Map.Entry<K, V>>() {
public int compare(Map.Entry<K, V> o1, Map.Entry<K, V> o2) {
return (o2.getValue()).compareTo( o1.getValue() );
}
});
return list;
}
}
Run Code Online (Sandbox Code Playgroud)
对于诸如{1,1,2,2,3,3,4,4}的输入,该方法具有O(N ^ 2)的最差情况运行时间.这个问题有更好的算法吗?
PS - 我试过在代码审查中提出这个问题,但没有得到任何回复,这就是为什么搬到这里
Pha*_*ung 13
为了找到数组的程度,我们只需要跟踪数组中每个不同元素的频率,那些具有最高频率的元素就是度数.
因此,为了找到具有最大度数的子数组,我们只需关心包含具有最大计数的元素的子数组,这意味着所有子数组[start , end]都是该元素的开始和结束事件.
因此,我们需要做的是跟踪每个元素的频率,开始和结束位置.
伪代码:
int max = 0;
Map<Integer, Integer> map = new HashMap<>();
Map<Integer, Integer> startIndex = new HashMap<>();
Map<Integer, Integer> endIndex = new HashMap<>();
for(int i = 0; i < data.length; i++){
int value = data[i];
if(map.containsKey(value)){
map.put(value, map.get(value) + 1);
}else{
startIndex.put(value, i);
map.put(value, 1);
}
endIndex.put(value, i);
max = Integer.max(max, map.get(value));//Calculate the degree of the array
}
int result = data.length;
for(int i : map.keySet()){
if(map.get(i) == max){
int len = endIndex.get(i) - startIndex.get(i) + 1;
result = Integer.min(result, len);
}
}
return result;
Run Code Online (Sandbox Code Playgroud)
时间复杂度为O(n)