Ami*_*mir 3 machine-learning neural-network conv-neural-network pytorch
我想nn.Module在Pytorch 中创建。我使用以下代码解决文本相关问题(实际上我使用Glove300d 预训练嵌入和句子中单词的加权平均值来进行分类)。
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv1d(300, 128, kernel_size=5)
self.conv2 = nn.Conv1d(128, 64, kernel_size=2)
self.conv2_drop = nn.Dropout()
self.fc1 = nn.Linear(64, 20)
self.fc2 = nn.Linear(20, 2)
def forward(self, x):
x = F.relu(F.avg_pool1d(self.conv1(x), 2))
x = F.relu(F.avg_pool1d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 1)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
return self.fc2(x)
Run Code Online (Sandbox Code Playgroud)
但它给了我以下错误:
Traceback (most recent call last):
x = F.relu(F.avg_pool1d(self.conv1(x), 2))
File "/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/site-packages/torch/nn/modules/module.py", line 224, in __call__
result = self.forward(*input, **kwargs)
File "/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/site-packages/torch/nn/modules/conv.py", line 154, in forward
self.padding, self.dilation, self.groups)
File "/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/site-packages/torch/nn/functional.py", line 83, in conv1d
return f(input, weight, bias)
RuntimeError: expected Double tensor (got Float tensor)
Run Code Online (Sandbox Code Playgroud)
我相当新Conv1d,大部分教程用于Conv1d图像问题。任何人都可以给我一些想法是什么问题?
我还在model.double()forward 方法中添加了但给了我另一个错误:
RuntimeError: Given input size: (300 x 1 x 1). Calculated output size: (128 x 1 x -3). Output size is too small
Run Code Online (Sandbox Code Playgroud)
运行时错误:预期双张量(得到浮动张量)
当您将双张量传递给第一个conv1d函数时,就会发生这种情况。Conv1d仅适用于浮动张量。要么做,
conv1.double() , 或者model.double().这就是你所做的,这是正确的。
运行时错误:给定输入大小:(300 x 1 x 1)。计算出的输出尺寸:(128 x 1 x -3)。输出尺寸太小
这是因为您传递的输入是窗口大小为 5 的卷积无效的。您必须向Conv1ds添加填充才能使其工作,如下所示:
self.conv1 = nn.Conv1d(300, 128, kernel_size=5, padding=2)
Run Code Online (Sandbox Code Playgroud)
如果您不想添加填充,那么给定 (batch_size, in_channels, inp_size) 作为输入张量的大小,您必须确保您的 inp_size 大于 5。
确保您的尺寸对于网络的其余部分是正确的。像这样:
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv1d(300, 128, kernel_size=5, padding=2)
self.conv2 = nn.Conv1d(128, 64, kernel_size=2, padding=1)
self.conv2_drop = nn.Dropout()
self.fc1 = nn.Linear(64, 20)
self.fc2 = nn.Linear(20, 2)
def forward(self, x):
x = F.relu(F.avg_pool1d(self.conv1(x), 2, padding=1))
x = F.relu(F.avg_pool1d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(1, -1) # bonus fix, Linear needs (batch_size, in_features) and not (in_features, batch_size) as input.
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
return self.fc2(x)
if __name__ == '__main__':
t = Variable(torch.randn((1, 300, 1))).double() # t is a double tensor
model = Net()
model.double() # this will make sure that conv1d will process double tensor
out = model(t)
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
5047 次 |
| 最近记录: |