如何连接列值在一定范围内的两个数据帧?

Dou*_*ger 47 python datetime intervals dataframe pandas

给定两个dataframes df_1df_2如何加入他们的行列,使得datetime列df_1是介于两者之间start,并end 在数据帧df_2:

print df_1

  timestamp              A          B
0 2016-05-14 10:54:33    0.020228   0.026572
1 2016-05-14 10:54:34    0.057780   0.175499
2 2016-05-14 10:54:35    0.098808   0.620986
3 2016-05-14 10:54:36    0.158789   1.014819
4 2016-05-14 10:54:39    0.038129   2.384590


print df_2

  start                end                  event    
0 2016-05-14 10:54:31  2016-05-14 10:54:33  E1
1 2016-05-14 10:54:34  2016-05-14 10:54:37  E2
2 2016-05-14 10:54:38  2016-05-14 10:54:42  E3
Run Code Online (Sandbox Code Playgroud)

获取相应的event位置和df1.timestamp之间df_2.startdf2.end

  timestamp              A          B          event
0 2016-05-14 10:54:33    0.020228   0.026572   E1
1 2016-05-14 10:54:34    0.057780   0.175499   E2
2 2016-05-14 10:54:35    0.098808   0.620986   E2
3 2016-05-14 10:54:36    0.158789   1.014819   E2
4 2016-05-14 10:54:39    0.038129   2.384590   E3
Run Code Online (Sandbox Code Playgroud)

Flo*_*oor 34

一个简单的解决方案是interval indexstart and end设置创建closed = both然后使用get_loc来获取事件即(希望所有日期时间都在时间戳dtype)

df_2.index = pd.IntervalIndex.from_arrays(df_2['start'],df_2['end'],closed='both')
df_1['event'] = df_1['timestamp'].apply(lambda x : df_2.iloc[df_2.index.get_loc(x)]['event'])
Run Code Online (Sandbox Code Playgroud)

输出:

            timestamp         A         B event
0 2016-05-14 10:54:33  0.020228  0.026572    E1
1 2016-05-14 10:54:34  0.057780  0.175499    E2
2 2016-05-14 10:54:35  0.098808  0.620986    E2
3 2016-05-14 10:54:36  0.158789  1.014819    E2
4 2016-05-14 10:54:39  0.038129  2.384590    E3

  • 据我所知,如果某些事件超出了时间间隔,则会失败。虽然提供的代码适用于示例数据,但我认为并不能完全满足如何在时间范围内_join_的问题,因为该问题意味着答案将更类似于 SQL 如何使用 `之间`-关键字 (2认同)

cs9*_*s95 18

idx = pd.IntervalIndex.from_arrays(df_2['start'], df_2['end'], closed='both')
event = df_2.loc[idx.get_indexer(df_1.timestamp), 'event']

event
0    E1
1    E2
1    E2
1    E2
2    E3
Name: event, dtype: object

df_1['event'] = event.values
df_1
            timestamp         A         B event
0 2016-05-14 10:54:33  0.020228  0.026572    E1
1 2016-05-14 10:54:34  0.057780  0.175499    E2
2 2016-05-14 10:54:35  0.098808  0.620986    E2
3 2016-05-14 10:54:36  0.158789  1.014819    E2
4 2016-05-14 10:54:39  0.038129  2.384590    E3
Run Code Online (Sandbox Code Playgroud)

参考:一个问题IntervalIndex.get_indexer.


chr*_*orn 10

您可以使用模块pandasql

import pandasql as ps

sqlcode = '''
select df_1.timestamp
,df_1.A
,df_1.B
,df_2.event
from df_1 
inner join df_2 
on d1.timestamp between df_2.start and df2.end
'''

newdf = ps.sqldf(sqlcode,locals())
Run Code Online (Sandbox Code Playgroud)

  • 这很慢。 (2认同)

WeN*_*Ben 8

选项1

idx = pd.IntervalIndex.from_arrays(df_2['start'], df_2['end'], closed='both')
df_2.index=idx
df_1['event']=df_2.loc[df_1.timestamp,'event'].values
Run Code Online (Sandbox Code Playgroud)

选项2

df_2['timestamp']=df_2['end']
pd.merge_asof(df_1,df_2[['timestamp','event']],on='timestamp',direction ='forward',allow_exact_matches =True)
Out[405]: 
            timestamp         A         B event
0 2016-05-14 10:54:33  0.020228  0.026572    E1
1 2016-05-14 10:54:34  0.057780  0.175499    E2
2 2016-05-14 10:54:35  0.098808  0.620986    E2
3 2016-05-14 10:54:36  0.158789  1.014819    E2
4 2016-05-14 10:54:39  0.038129  2.384590    E3
Run Code Online (Sandbox Code Playgroud)


Tai*_*Tai 5

在此方法中,我们假设使用了 TimeStamp 对象。

df2  start                end                  event    
   0 2016-05-14 10:54:31  2016-05-14 10:54:33  E1
   1 2016-05-14 10:54:34  2016-05-14 10:54:37  E2
   2 2016-05-14 10:54:38  2016-05-14 10:54:42  E3

event_num = len(df2.event)

def get_event(t):    
    event_idx = ((t >= df2.start) & (t <= df2.end)).dot(np.arange(event_num))
    return df2.event[event_idx]

df1["event"] = df1.timestamp.transform(get_event)
Run Code Online (Sandbox Code Playgroud)

的解释 get_event

对于 中的每个时间戳df1,比如说t0 = 2016-05-14 10:54:33

(t0 >= df2.start) & (t0 <= df2.end)将包含 1 个 true。(参见示例 1)。然后,取一个点积 withnp.arange(event_num)得到 at0所属事件的索引。

例子:

示例 1

    t0 >= df2.start    t0 <= df2.end     After &     np.arange(3)    
0     True                True         ->  T              0        event_idx
1    False                True         ->  F              1     ->     0
2    False                True         ->  F              2
Run Code Online (Sandbox Code Playgroud)

t2 = 2016-05-14 10:54:35另一个例子

    t2 >= df2.start    t2 <= df2.end     After &     np.arange(3)    
0     True                False        ->  F              0        event_idx
1     True                True         ->  T              1     ->     1
2    False                True         ->  F              2
Run Code Online (Sandbox Code Playgroud)

我们最终使用transform将每个时间戳转换为一个事件。