如何从dataframe pandas列出列表?

Sat*_*owo 2 python tuples list dataframe pandas

我有一个带有单词和标签的Pandas数据框

  words   tags
0 I       WW
1 am      XX
2 newbie  YY
3 .       ZZ
4 You     WW
5 are     XX
6 cool    YY
7 .       ZZ
Run Code Online (Sandbox Code Playgroud)

是否有任何方法如何从数据框创建列表列表,如下所示:

[[('I', 'WW'), ('am', 'XX'), ('newbie', 'YY'), ('.','ZZ')], 
 [('You', 'WW'), ('are', 'XX'), ('cool', 'YY'), ('.','ZZ')]]
Run Code Online (Sandbox Code Playgroud)

它是元组列表的列表.列表中的每个列表都用('.','ZZ').意思是它是一个句子.

我可以迭代数据帧的每一行并创建列表并在条件为真时附加它,但是有没有"pandas"方法来解决它?

jez*_*ael 6

您可以先从所有值创建元组,然后在性能很重要时将它们分隔为子列表:

from  itertools import groupby

L = list(zip(df['words'], df['tags']))
print (L)
[('I', 'WW'), ('am', 'XX'), ('newbie', 'YY'), 
 ('.', 'ZZ'), ('You', 'WW'), ('are', 'XX'), 
 ('cool', 'YY'), ('.', 'ZZ')]

sep = ('.','ZZ')
new_L = [list(g) + [sep] for k, g in groupby(L, lambda x: x==sep) if not k] 
print (new_L)

[[('I', 'WW'), ('am', 'XX'), ('newbie', 'YY'), ('.', 'ZZ')], 
 [('You', 'WW'), ('are', 'XX'), ('cool', 'YY'), ('.', 'ZZ')]]
Run Code Online (Sandbox Code Playgroud)

时间:

df = pd.concat([df]*1000).reset_index(drop=True)

def zero(df):
    dft = df.apply(tuple, 1)
    return ([x.values.tolist() for _, x in dft.groupby((dft == ('.', 'ZZ')).shift().cumsum().bfill())])

In [55]: %timeit ([list(g) + [('.','ZZ')] for k, g in groupby(list(zip(df['words'], df['tags'])), lambda x: x==('.','ZZ')) if not k] )
100 loops, best of 3: 4.14 ms per loop

def pir(df):
    v = df.values
    return ([list(map(tuple, x)) for x in np.split(v, np.where((v == ['.', 'ZZ']).all(1)[:-1])[0] + 1)])

In [68]: %timeit (pir(df))
10 loops, best of 3: 21.9 ms per loop


In [56]: %timeit (zero(df))
1 loop, best of 3: 328 ms per loop

In [57]: %timeit (df.groupby((df.shift().values == ['.', 'ZZ']).all(axis=1).cumsum()).apply(lambda group: list(zip(group['words'], group['tags']))).values.tolist())
1 loop, best of 3: 286 ms per loop

In [58]: %timeit (list(filter(None,[i.apply(tuple,1).values.tolist() for i in np.array_split(df,df[(df['words'] == '.') & (df['tags'] == 'ZZ')].index+1)])))
1 loop, best of 3: 1.31 s per loop
Run Code Online (Sandbox Code Playgroud)

对于单独的子列表我创建问题,您可以在此处检查解决方案:

def jez_coldspeed(df):
    L = list(zip(df['words'], df['tags']))
    L2 = []
    for i in L[::-1]:
        if i == ('.','ZZ'):
            L2.append([])

        L2[-1].append(i)

    return [x[::-1] for x in L2[::-1]]

def jez_coldspeed1(df):
    L = list(zip(df['words'], df['tags']))
    L2 = []
    sep = ('.','ZZ')
    for i in reversed(L):
         if i == sep:
             L2.append([])

         L2[-1].append(i)

    return [x[::-1] for x in reversed(L2)]


In [74]: %timeit (jez_coldspeed(df))
100 loops, best of 3: 2.96 ms per loop

In [75]: %timeit (jez_coldspeed1(df))
100 loops, best of 3: 2.95 ms per loop
Run Code Online (Sandbox Code Playgroud)
def jez_theBuzzyCoder(df):
    L = list(zip(df['words'], df['tags']))
    a = list()
    start = 0
    sep = ('.', 'ZZ')

    while start < len(L) and (L.index(sep, start) != -1):
        end = L.index(sep, start) + 1
        a.append(L[start:end])
        start = end
    return a


print (jez_theBuzzyCoder(df))

In [81]: %timeit (jez_theBuzzyCoder(df))
100 loops, best of 3: 3.16 ms per loop
Run Code Online (Sandbox Code Playgroud)