Wil*_*ght 5 performance loops r subset
在我的工作数据集中,我正在尝试计算批发和收入变化的周数值.代码似乎有效,但我的估计显示,运行看似简单的计算需要大约75小时.下面是通用的可重现版本,在这个较小的数据集上运行大约需要2米:
########################################################################################################################
# MAKE A GENERIC REPORDUCIBLE STACK OVERFLOW QUESTION
########################################################################################################################
# Create empty data frame of 26,000 observations similar to my data, but populated with noise
exampleData <- data.frame(product = rep(LETTERS,1000),
wholesale = rnorm(1000*26),
revenue = rnorm(1000*26))
# create a week_ending column which increases by one week with every set of 26 "products"
for(i in 1:nrow(exampleData)){
exampleData$week_ending[i] <- as.Date("2016-09-04")+7*floor((i-1)/26)
}
exampleData$week_ending <- as.Date(exampleData$week_ending, origin = "1970-01-01")
# create empty columns to fill
exampleData$wholesale_wow <- NA
exampleData$revenue_wow <- NA
# loop through the wholesale and revenue numbers and append the week-over-week changes
for(i in 1:nrow(exampleData)){
# set a condition where the loop only appends the week-over-week values if it's not the first week
if(exampleData$week_ending[i]!="2016-09-04"){
# set temporary values for the current and past week's wholesale value
currentWholesale <- exampleData$wholesale[i]
lastWeekWholesale <- exampleData$wholesale[which(exampleData$product==exampleData$product[i] &
exampleData$week_ending==exampleData$week_ending[i]-7)]
exampleData$wholesale_wow[i] <- currentWholesale/lastWeekWholesale -1
# set temporary values for the current and past week's revenue
currentRevenue <- exampleData$revenue[i]
lastWeekRevenue <- exampleData$revenue[which(exampleData$product==exampleData$product[i] &
exampleData$week_ending==exampleData$week_ending[i]-7)]
exampleData$revenue_wow[i] <- currentRevenue/lastWeekRevenue -1
}
}
Run Code Online (Sandbox Code Playgroud)
任何帮助理解为什么这么长时间或如何减少时间将非常感谢!
for可以使用以下内容简化第一个循环:
exampleData$week_ending2 <- as.Date("2016-09-04") + 7 * floor((seq_len(nrow(exampleData)) - 1) / 26)
setequal(exampleData$week_ending, exampleData$week_ending2)
[1] TRUE
Run Code Online (Sandbox Code Playgroud)
替换第二个for循环
library(data.table)
dt1 <- as.data.table(exampleData)
dt1[, wholesale_wow := wholesale / shift(wholesale) - 1 , by = product]
dt1[, revenue_wow := revenue / shift(revenue) - 1 , by = product]
setequal(exampleData, dt1)
[1] TRUE
Run Code Online (Sandbox Code Playgroud)
这需要大约4毫秒才能在我的笔记本电脑上运行