使用Tidyeval进行程序回归建模

Pet*_*son 3 r dplyr tidyeval rlang

我正在尝试使用tidyeval进行编程。

我想编写一个函数为选定的结果变量运行逻辑回归模型:

library(tidyverse)
set.seed(1234)

df <- tibble(id = 1:1000,
             group = sample(c("Group 1", "Group 2", "Group 3"), 1000, replace = TRUE),
             died = sample(c(0,1), 1000, replace = TRUE))

myfunc <- function(data, outcome){

enquo_var <- enquo(outcome)

fit <- tidy(glm(!!enquo_var ~ group, data=data, 
                family = binomial(link = "logit")), 
                exponentiate = TRUE, conf.int=TRUE)

fit
}


myfunc(df, died)
Run Code Online (Sandbox Code Playgroud)

但是得到:

!enquo_outcome错误:参数类型无效

(请注意,实际情况涉及更复杂的功能)。

这可能吗?

akr*_*run 5

我们需要创建一个公式来glm进行选择。一种选择是paste

myfunc <- function(data, outcome){
  enquo_var <- enquo(outcome)
   fit <- tidy(glm(paste(quo_name(enquo_var), "group", sep="~"), data=data, 
                family = binomial(link = "logit")), 
                exponentiate = TRUE, conf.int=TRUE)

fit
}

myfunc(df, died)
#         term  estimate std.error  statistic    p.value  conf.low conf.high
#1  (Intercept) 0.8715084 0.1095300 -1.2556359 0.20924801 0.7026185  1.079852
#2 groupGroup 2 0.9253515 0.1550473 -0.5003736 0.61681204 0.6826512  1.253959
#3 groupGroup 3 1.3692735 0.1557241  2.0181864 0.04357185 1.0095739  1.859403
Run Code Online (Sandbox Code Playgroud)

如果我们还需要使用tidyverse函数

myfunc <- function(data, outcome){

  quo_var <- quo_name(enquo(outcome))

   fit <- tidy(glm(rlang::expr(!! rlang::sym(quo_var) ~ group), data=data, 
            family = binomial(link = "logit")), 
            exponentiate = TRUE, conf.int=TRUE)

 fit
}

myfunc(df, died)
#           term  estimate std.error  statistic    p.value  conf.low conf.high
#1  (Intercept) 0.8715084 0.1095300 -1.2556359 0.20924801 0.7026185  1.079852
#2 groupGroup 2 0.9253515 0.1550473 -0.5003736 0.61681204 0.6826512  1.253959
#3 groupGroup 3 1.3692735 0.1557241  2.0181864 0.04357185 1.0095739  1.859403
Run Code Online (Sandbox Code Playgroud)

或者作为注释中提到的@lionel get_expr可以使用

myfunc <- function(data, outcome){

  quo_var <- enquo(outcome)

   fit <- tidy(glm(rlang::expr(!! rlang::get_expr(quo_var) ~ group), data=data, 
            family = binomial(link = "logit")), 
            exponentiate = TRUE, conf.int=TRUE)

 fit
}

myfunc(df, died)
#         term  estimate std.error  statistic    p.value  conf.low conf.high
#1  (Intercept) 0.8715084 0.1095300 -1.2556359 0.20924801 0.7026185  1.079852
#2 groupGroup 2 0.9253515 0.1550473 -0.5003736 0.61681204 0.6826512  1.253959
#3 groupGroup 3 1.3692735 0.1557241  2.0181864 0.04357185 1.0095739  1.859403
Run Code Online (Sandbox Code Playgroud)

或@lionel建议的更紧凑的方法,它避免了enquo/quo_name/sym转换,而是直接在enexpr

myfunc <- function(data, outcome){
  enquo_var <- enquo(outcome)
   fit <- tidy(glm(paste(quo_name(enquo_var), "group", sep="~"), data=data, 
                family = binomial(link = "logit")), 
                exponentiate = TRUE, conf.int=TRUE)

fit
}

myfunc(df, died)
#         term  estimate std.error  statistic    p.value  conf.low conf.high
#1  (Intercept) 0.8715084 0.1095300 -1.2556359 0.20924801 0.7026185  1.079852
#2 groupGroup 2 0.9253515 0.1550473 -0.5003736 0.61681204 0.6826512  1.253959
#3 groupGroup 3 1.3692735 0.1557241  2.0181864 0.04357185 1.0095739  1.859403
Run Code Online (Sandbox Code Playgroud)