dks*_*551 3 scala akka akka-stream akka-dispatcher reactive-kafka
我正在运行Akka Streams Reactive Kafka应用程序,该应用程序应该在高负载下运行.运行应用程序大约10分钟后,应用程序关闭了OutOfMemoryError.我试图调试堆转储,发现它akka.dispatch.Dispatcher占用了大约5GB的内存.以下是我的配置文件.
Akka版本:2.4.18
Reactive Kafka版本:2.4.18
1 application.conf.:
consumer {
num-consumers = "2"
c1 {
bootstrap-servers = "localhost:9092"
bootstrap-servers=${?KAFKA_CONSUMER_ENDPOINT1}
groupId = "testakkagroup1"
subscription-topic = "test"
subscription-topic=${?SUBSCRIPTION_TOPIC1}
message-type = "UserEventMessage"
poll-interval = 100ms
poll-timeout = 50ms
stop-timeout = 30s
close-timeout = 20s
commit-timeout = 15s
wakeup-timeout = 10s
use-dispatcher = "akka.kafka.default-dispatcher"
kafka-clients {
enable.auto.commit = true
}
}
Run Code Online (Sandbox Code Playgroud)
2 . build.sbt:
java -Xmx6g \
-Dcom.sun.management.jmxremote.port=27019 \
-Dcom.sun.management.jmxremote.authenticate=false \
-Dcom.sun.management.jmxremote.ssl=false \
-Djava.rmi.server.hostname=localhost \
-Dzookeeper.host=$ZK_HOST \
-Dzookeeper.port=$ZK_PORT \
-jar ./target/scala-2.11/test-assembly-1.0.jar
Run Code Online (Sandbox Code Playgroud)
3. Source和Sink演员:
class EventStream extends Actor with ActorLogging {
implicit val actorSystem = context.system
implicit val timeout: Timeout = Timeout(10 seconds)
implicit val materializer = ActorMaterializer()
val settings = Settings(actorSystem).KafkaConsumers
override def receive: Receive = {
case StartUserEvent(id) =>
startStreamConsumer(consumerConfig("EventMessage"+".c"+id))
}
def startStreamConsumer(config: Map[String, String]) = {
val consumerSource = createConsumerSource(config)
val consumerSink = createConsumerSink()
val messageProcessor = startMessageProcessor(actorA, actorB, actorC)
log.info("Starting The UserEventStream processing")
val future = consumerSource.map { message =>
val m = s"${message.record.value()}"
messageProcessor ? m
}.runWith(consumerSink)
future.onComplete {
case _ => actorSystem.stop(messageProcessor)
}
}
def startMessageProcessor(actorA: ActorRef, actorB: ActorRef, actorC: ActorRef) = {
actorSystem.actorOf(Props(classOf[MessageProcessor], actorA, actorB, actorC))
}
def createConsumerSource(config: Map[String, String]) = {
val kafkaMBAddress = config("bootstrap-servers")
val groupID = config("groupId")
val topicSubscription = config("subscription-topic").split(',').toList
println(s"Subscriptiontopics $topicSubscription")
val consumerSettings = ConsumerSettings(actorSystem, new ByteArrayDeserializer, new StringDeserializer)
.withBootstrapServers(kafkaMBAddress)
.withGroupId(groupID)
.withProperty(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest")
.withProperty(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG,"true")
Consumer.committableSource(consumerSettings, Subscriptions.topics(topicSubscription:_*))
}
def createConsumerSink() = {
Sink.foreach(println)
}
}
Run Code Online (Sandbox Code Playgroud)
在这种情况下actorA,actorB和actorC正在做一些业务逻辑处理与数据库交互.在处理Akka Reactive Kafka消费者时,我有什么遗漏,例如提交,错误或限制配置吗?因为查看堆转储,我猜测消息堆积如山.
我要改变的一件事是:
val future = consumerSource.map { message =>
val m = s"${message.record.value()}"
messageProcessor ? m
}.runWith(consumerSink)
Run Code Online (Sandbox Code Playgroud)
在上面的代码中,您将使用ask向messageProcessoractor 发送消息并期望回复,但为了ask充当背压机制,您需要使用它mapAsync(更多信息在文档中).类似于以下内容:
val future =
consumerSource
.mapAsync(parallelism = 5) { message =>
val m = s"${message.record.value()}"
messageProcessor ? m
}
.runWith(consumerSink)
Run Code Online (Sandbox Code Playgroud)
根据需要调整并行度.