use*_*540 5 python machine-learning neural-network conv-neural-network tensorflow
我已经训练了一个批量大小为 10 的卷积神经网络。但是在测试时,我想分别预测每个数据集的分类而不是批量预测,这会产生错误:
Assign requires shapes of both tensors to match. lhs shape= [1,3] rhs shape= [10,3]
Run Code Online (Sandbox Code Playgroud)
我理解 10 指的是batch_size3 是我要分类的类的数量。
我们可以不使用批次进行训练并单独测试吗?
更新:
训练阶段:
batch_size=10
classes=3
#vlimit is some constant : same for training and testing phase
X = tf.placeholder(tf.float32, [batch_size,vlimit ], name='X_placeholder')
Y = tf.placeholder(tf.int32, [batch_size, classes], name='Y_placeholder')
w = tf.Variable(tf.random_normal(shape=[vlimit, classes], stddev=0.01), name='weights')
b = tf.Variable(tf.ones([batch_size,classes]), name="bias")
logits = tf.matmul(X, w) + b
entropy = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=Y, name='loss')
loss = tf.reduce_mean(entropy)
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(loss)
Run Code Online (Sandbox Code Playgroud)
测试阶段:
batch_size=1
classes=3
X = tf.placeholder(tf.float32, [batch_size,vlimit ], name='X_placeholder')
Y = tf.placeholder(tf.int32, [batch_size, classes], name='Y_placeholder')
w = tf.Variable(tf.random_normal(shape=[vlimit, classes], stddev=0.01), name='weights')
b = tf.Variable(tf.ones([batch_size,classes]), name="bias")
logits = tf.matmul(X, w) + b
entropy = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=Y, name='loss')
loss = tf.reduce_mean(entropy)
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(loss)
Run Code Online (Sandbox Code Playgroud)
定义占位符时,请使用:
X = tf.placeholder(tf.float32, [None, vlimit ], name='X_placeholder')
Y = tf.placeholder(tf.int32, [None, classes], name='Y_placeholder')
...
Run Code Online (Sandbox Code Playgroud)
相反,您的培训和测试阶段(实际上,您不需要为测试阶段重新定义这些)。还将您的偏见定义为:
b = tf.Variable(tf.ones([classes]), name="bias")
Run Code Online (Sandbox Code Playgroud)
否则,您将为批次中的每个样本训练单独的偏差,这不是您想要的。
TensorFlow 应自动沿输入的第一个维度展开,并将其识别为批次大小,因此对于训练,您可以向其提供 10 个批次,而对于测试,您可以向其提供单个样本(或 100 个批次或其他样本)。
| 归档时间: |
|
| 查看次数: |
1844 次 |
| 最近记录: |