nun*_*usa 3 python deep-learning keras
我使用keras实现了一个分类程序.我有一大堆图像,我想使用for循环预测每个图像.
但是,每次计算新图像时,交换内存都会增加.我试图删除预测函数中的所有变量(我确信它在此函数内部存在问题)但内存仍然增加.
for img in images:
predict(img, model, categ_par, gl_par)
Run Code Online (Sandbox Code Playgroud)
和相应的功能:
def predict(image_path, model, categ_par, gl_par):
print("[INFO] loading and preprocessing image...")
orig = cv2.imread(image_path)
image = load_img(image_path, target_size=(gl_par.img_width, gl_par.img_height))
image = img_to_array(image)
# important! otherwise the predictions will be '0'
image = image / 255
image = np.expand_dims(image, axis=0)
# build the VGG16 network
if(categ_par.method == 'VGG16'):
model = applications.VGG16(include_top=False, weights='imagenet')
if(categ_par.method == 'InceptionV3'):
model = applications.InceptionV3(include_top=False, weights='imagenet')
# get the bottleneck prediction from the pre-trained VGG16 model
bottleneck_prediction = model.predict(image)
# build top model
model = Sequential()
model.add(Flatten(input_shape=bottleneck_prediction.shape[1:]))
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(categ_par.n_class, activation='softmax'))
model.load_weights(categ_par.top_model_weights_path)
# use the bottleneck prediction on the top model to get the final classification
class_predicted = model.predict_classes(bottleneck_prediction)
probability_predicted = (model.predict_proba(bottleneck_prediction))
classe = pd.DataFrame(list(zip(categ_par.class_indices.keys(), list(probability_predicted[0])))).\
rename(columns = {0:'type', 1: 'prob'}).reset_index(drop=True)
#print(classe)
del model
del bottleneck_prediction
del image
del orig
del class_predicted
del probability_predicted
return classe.set_index(['type']).T
Run Code Online (Sandbox Code Playgroud)
如果您正在使用TensorFlow后端,那么您将在for循环中为每个img构建一个模型.TensorFlow只是将图形附加到图形等上,这意味着内存刚刚上升.这是一个众所周知的事件,必须在超参数优化期间处理,当你要构建许多模型时,还要在这里.
from keras import backend as K
Run Code Online (Sandbox Code Playgroud)
并把它放在predict()的末尾:
K.clear_session()
Run Code Online (Sandbox Code Playgroud)
或者您可以构建一个模型并将其作为预测函数的输入提供,这样您每次都不会构建新模型.