我正在学习 Tensor Flow Coursera 课程,但我不明白为什么我会遇到类型不匹配的问题。
这是我定义的函数:
def one_hot_matrix(labels, C):
"""
Creates a matrix where the i-th row corresponds to the ith class number and the jth column
corresponds to the jth training example. So if example j had a label i. Then entry (i,j)
will be 1.
Arguments:
labels -- vector containing the labels
C -- number of classes, the depth of the one hot dimension
Returns:
one_hot -- one hot matrix
"""
### START CODE HERE ###
# Create a tf.constant equal to C (depth), name it 'C'. (approx. 1 line)
C = tf.constant(C, name="C")
#labels =tf.placeholder(labels, name="labels")
# Use tf.one_hot, be careful with the axis (approx. 1 line)
one_hot_matrix = tf.one_hot(indices=labels, depth=C, axis=0)
# Create the session (approx. 1 line)
sess = tf.Session()
# Run the session (approx. 1 line)
one_hot = sess.run(one_hot_matrix, feed_dict={labels:labels, C:C})
# Close the session (approx. 1 line). See method 1 above.
sess.close()
### END CODE HERE ###
return one_hot
Run Code Online (Sandbox Code Playgroud)
当运行这个时:
labels = np.array([1,2,3,0,2,1])
one_hot = one_hot_matrix(labels, C = 4)
print ("one_hot = " + str(one_hot))
Run Code Online (Sandbox Code Playgroud)
我收到此类型错误:
TypeError Traceback (most recent call last)
<ipython-input-113-2b9d0290645f> in <module>()
1 labels = np.array([1,2,3,0,2,1])
----> 2 one_hot = one_hot_matrix(labels, C = 4)
3 print ("one_hot = " + str(one_hot))
<ipython-input-112-f9f17c86d0ba> in one_hot_matrix(labels, C)
28
29 # Run the session (approx. 1 line)
---> 30 one_hot = sess.run(one_hot_matrix, feed_dict={labels:labels, C:C})
31
32 # Close the session (approx. 1 line). See method 1 above.
TypeError: unhashable type: 'numpy.ndarray'ter code here
Run Code Online (Sandbox Code Playgroud)
我检查了 tf.one_hot 的 Tensorflow 文档,np.arrays 应该没有问题。
该labels和C是图形定义中的常数。因此,您在调用sess.run(). 我只是稍微改变了行one_hot = sess.run(one_hot_matrix1),现在应该可以工作了。
def one_hot_matrix(labels, C):
"""
Creates a matrix where the i-th row corresponds to the ith class number and the jth column
corresponds to the jth training example. So if example j had a label i. Then entry (i,j)
will be 1.
Arguments:
labels -- vector containing the labels
C -- number of classes, the depth of the one hot dimension
Returns:
one_hot -- one hot matrix
"""
### START CODE HERE ###
# Create a tf.constant equal to C (depth), name it 'C'. (approx. 1 line)
C = tf.constant(C, name="C")
#labels =tf.placeholder(labels, name="labels")
# Use tf.one_hot, be careful with the axis (approx. 1 line)
one_hot_matrix1 = tf.one_hot(indices=labels, depth=C, axis=0)
# Create the session (approx. 1 line)
sess = tf.Session()
# Run the session (approx. 1 line)
one_hot = sess.run(one_hot_matrix1) #, feed_dict={labels:labels, C:C}
# Close the session (approx. 1 line). See method 1 above.
sess.close()
### END CODE HERE ###
return one_hot
Run Code Online (Sandbox Code Playgroud)
跑:
labels = np.array([1,2,3,0,2,1])
one_hot = one_hot_matrix(labels, C = 4)
print ("one_hot = " + str(one_hot))
Run Code Online (Sandbox Code Playgroud)
输出:
one_hot = [[ 0. 0. 0. 1. 0. 0.]
[ 1. 0. 0. 0. 0. 1.]
[ 0. 1. 0. 0. 1. 0.]
[ 0. 0. 1. 0. 0. 0.]]
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
1710 次 |
| 最近记录: |