oww*_*w14 3 python dictionary replace dataframe pandas
我试图用一个dictionary key来代替strings在pandas其列values。但是,每一列都包含句子。因此,我必须首先标记这些句子,并检测该句子中的单词是否与我的词典中的键相对应,然后将字符串替换为相应的值。
但是,结果我仍然一无所获。有没有更好的pythonic方法来解决此问题?
这是我目前的MVC。在评论中,我指定了问题发生的位置。
import pandas as pd
data = {'Categories': ['animal','plant','object'],
'Type': ['tree','dog','rock'],
'Comment': ['The NYC tree is very big','The cat from the UK is small','The rock was found in LA.']
}
ids = {'Id':['NYC','LA','UK'],
'City':['New York City','Los Angeles','United Kingdom']}
df = pd.DataFrame(data)
ids = pd.DataFrame(ids)
def col2dict(ids):
data = ids[['Id', 'City']]
idDict = data.set_index('Id').to_dict()['City']
return idDict
def replaceIds(data,idDict):
ids = idDict.keys()
types = idDict.values()
data['commentTest'] = data['Comment']
words = data['commentTest'].apply(lambda x: x.split())
for (i,word) in enumerate(words):
#Here we can see that the words appear
print word
print ids
if word in ids:
#Here we can see that they are not being recognized. What happened?
print ids
print word
words[i] = idDict[word]
data['commentTest'] = ' '.apply(lambda x: ''.join(x))
return data
idDict = col2dict(ids)
results = replaceIds(df, idDict)
Run Code Online (Sandbox Code Playgroud)
结果:
None
Run Code Online (Sandbox Code Playgroud)
我正在使用python2.7,当我打印出时dict,有u'Unicode。
我的预期结果是:
分类目录
评论
类型
commentTest
Categories Comment Type commentTest
0 animal The NYC tree is very big tree The New York City tree is very big
1 plant The cat from the UK is small dog The cat from the United Kingdom is small
2 object The rock was found in LA. rock The rock was found in Los Angeles.
Run Code Online (Sandbox Code Playgroud)
tdy*_*tdy 14
尽管需要循环,但实际上它的使用速度str.replace()比快得多:replace()str.replace()
ids = {'NYC': 'New York City', 'LA': 'Los Angeles', 'UK': 'United Kingdom'}
for old, new in ids.items():
df['Comment'] = df['Comment'].str.replace(old, new, regex=False)
# Categories Type Comment
# 0 animal tree The New York City tree is very big
# 1 plant dog The cat from the United Kingdom is small
# 2 object rock The rock was found in Los Angeles
Run Code Online (Sandbox Code Playgroud)
唯一一次replace()优于str.replace()循环的情况是使用小数据帧:
参考计时函数:
def Series_replace(df):
df['Comment'] = df['Comment'].replace(ids, regex=True)
return df
def Series_str_replace(df):
for old, new in ids.items():
df['Comment'] = df['Comment'].str.replace(old, new, regex=False)
return df
Run Code Online (Sandbox Code Playgroud)
请注意,如果ids是数据帧而不是字典,则可以使用以下方法获得相同的性能itertuples():
ids = pd.DataFrame({'Id': ['NYC', 'LA', 'UK'], 'City': ['New York City', 'Los Angeles', 'United Kingdom']})
for row in ids.itertuples():
df['Comment'] = df['Comment'].str.replace(row.Id, row.City, regex=False)
Run Code Online (Sandbox Code Playgroud)
您可以创建dictionary然后replace:
ids = {'Id':['NYC','LA','UK'],
'City':['New York City','Los Angeles','United Kingdom']}
ids = dict(zip(ids['Id'], ids['City']))
print (ids)
{'UK': 'United Kingdom', 'LA': 'Los Angeles', 'NYC': 'New York City'}
df['commentTest'] = df['Comment'].replace(ids, regex=True)
print (df)
Categories Comment Type \
0 animal The NYC tree is very big tree
1 plant The cat from the UK is small dog
2 object The rock was found in LA. rock
commentTest
0 The New York City tree is very big
1 The cat from the United Kingdom is small
2 The rock was found in Los Angeles.
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
3381 次 |
| 最近记录: |