我有下一个代码:
from sklearn.model_selection import train_test_split
from scipy.misc import imresize
def _chunks(l, n):
"""Yield successive n-sized chunks from l."""
for i in range(0, len(l), n):
yield l[i:i + n]
def _batch_generator(data, batch_size):
indexes = range(len(data))
index_chunks = _chunks(indexes, batch_size)
for i, indexes in enumerate(index_chunks):
print("\nLoaded batch {0}\n".format(i + 1))
batch_X = []
batch_y = []
for index in indexes:
record = data[index]
image = _read_train_image(record["id"], record["index"])
mask = _read_train_mask(record["id"], record["index"])
mask_resized = imresize(mask, (1276, 1916)) >= 123
mask_reshaped = mask_resized.reshape((1276, 1916, 1))
batch_X.append(image)
batch_y.append(mask_reshaped)
np_batch_X = np.array(batch_X)
np_batch_y = np.array(batch_y)
yield np_batch_X, np_batch_y
def train(data, model, batch_size, epochs):
train_data, test_data = train_test_split(data)
samples_per_epoch = len(train_data)
steps_per_epoch = samples_per_epoch // batch_size
print("Train on {0} records ({1} batches)".format(samples_per_epoch, steps_per_epoch))
train_generator = _batch_generator(train_data, batch_size)
model.fit_generator(train_generator,
steps_per_epoch=steps_per_epoch,
nb_epoch=epochs,
verbose=1)
train(train_indexes[:30], autoencoder,
batch_size=2,
epochs=1)
Run Code Online (Sandbox Code Playgroud)
所以看起来它必须在下一步工作:
len(list(_batch_generator(train_indexes[:22], 2)))真正返回11steps_per_epoch=steps_per_epoch)nb_epochs=epochs,epochs=1)但输出有下一个观点:
Train on 22 records (11 batches)
Epoch 1/1
Loaded batch 1
C:\Users\user\venv\machinelearning\lib\site-packages\ipykernel_launcher.py:39: UserWarning: The semantics of the Keras 2 argument `steps_per_epoch` is not the same as the Keras 1 argument `samples_per_epoch`. `steps_per_epoch` is the number of batches to draw from the generator at each epoch. Basically steps_per_epoch = samples_per_epoch/batch_size. Similarly `nb_val_samples`->`validation_steps` and `val_samples`->`steps` arguments have changed. Update your method calls accordingly.
C:\Users\user\venv\machinelearning\lib\site-packages\ipykernel_launcher.py:39: UserWarning: Update your `fit_generator` call to the Keras 2 API: `fit_generator(<generator..., steps_per_epoch=11, verbose=1, epochs=1)`
Loaded batch 2
1/11 [=>............................] - ETA: 11s - loss: 0.7471
Loaded batch 3
Loaded batch 4
Loaded batch 5
Loaded batch 6
2/11 [====>.........................] - ETA: 17s - loss: 0.7116
Loaded batch 7
Loaded batch 8
Loaded batch 9
Loaded batch 10
3/11 [=======>......................] - ETA: 18s - loss: 0.6931
Loaded batch 11
Exception in thread Thread-50:
Traceback (most recent call last):
File "C:\Anaconda3\Lib\threading.py", line 916, in _bootstrap_inner
self.run()
File "C:\Anaconda3\Lib\threading.py", line 864, in run
self._target(*self._args, **self._kwargs)
File "C:\Users\user\venv\machinelearning\lib\site-packages\keras\utils\data_utils.py", line 560, in data_generator_task
generator_output = next(self._generator)
StopIteration
4/11 [=========>....................] - ETA: 18s - loss: 0.6663
---------------------------------------------------------------------------
StopIteration Traceback (most recent call last)
<ipython-input-16-092ba6eb51d2> in <module>()
1 train(train_indexes[:30], autoencoder,
2 batch_size=2,
----> 3 epochs=1)
<ipython-input-15-f2fec4e53382> in train(data, model, batch_size, epochs)
37 steps_per_epoch=steps_per_epoch,
38 nb_epoch=epochs,
---> 39 verbose=1)
C:\Users\user\venv\machinelearning\lib\site-packages\keras\legacy\interfaces.py in wrapper(*args, **kwargs)
85 warnings.warn('Update your `' + object_name +
86 '` call to the Keras 2 API: ' + signature, stacklevel=2)
---> 87 return func(*args, **kwargs)
88 wrapper._original_function = func
89 return wrapper
C:\Users\user\venv\machinelearning\lib\site-packages\keras\engine\training.py in fit_generator(self, generator, steps_per_epoch, epochs, verbose, callbacks, validation_data, validation_steps, class_weight, max_queue_size, workers, use_multiprocessing, initial_epoch)
1807 batch_index = 0
1808 while steps_done < steps_per_epoch:
-> 1809 generator_output = next(output_generator)
1810
1811 if not hasattr(generator_output, '__len__'):
StopIteration:
Run Code Online (Sandbox Code Playgroud)
所以我可以看到 - 所有批次都是成功的(参见"已加载的批次")
但是在处理第1纪元的第3批时,keras引发了StopIteration.
小智 6
我也遇到了这个问题,我发现一种方法是可以在数据生成器函数中插入“ while True”块。但我无法获得消息来源。您可以参考以下代码:
while True:
assert len(inputs) == len(targets)
indices = np.arange(len(inputs))
if shuffle:
np.random.shuffle(indices)
if batchsize > len(indices):
sys.stderr.write('BatchSize out of index size')
batchsize = len(indices)
for start_idx in range(0, len(inputs) - batchsize + 1, batchsize):
if shuffle:
excerpt = indices[start_idx:start_idx + batchsize]
else:
excerpt = slice(start_idx, start_idx + batchsize)
yield inputs[excerpt], targets[excerpt]
Run Code Online (Sandbox Code Playgroud)
我找到了问题根源。首先 - 我的数据集在拟合结束之前已完全读取,因此它会引发
Exception in thread Thread-50:
Traceback (most recent call last):
File "C:\Anaconda3\Lib\threading.py", line 916, in _bootstrap_inner
self.run()
File "C:\Anaconda3\Lib\threading.py", line 864, in run
self._target(*self._args, **self._kwargs)
File "C:\Users\user\venv\machinelearning\lib\site-packages\keras\utils\data_utils.py", line 560, in data_generator_task
generator_output = next(self._generator)
StopIteration
Run Code Online (Sandbox Code Playgroud)
异常处理程序设置 stop_event 并重新引发异常
但 :
def get(self):
"""Creates a generator to extract data from the queue.
Skip the data if it is `None`.
# Returns
A generator
"""
while self.is_running():
if not self.queue.empty():
inputs = self.queue.get()
if inputs is not None:
yield inputs
else:
time.sleep(self.wait_time)
Run Code Online (Sandbox Code Playgroud)
因此,当设置停止事件时 - 它可以从队列加载数据
所以我将 max_queue_size 限制为 1。
| 归档时间: |
|
| 查看次数: |
6978 次 |
| 最近记录: |