Mat*_*ský 16 python tensorflow
我使用slim框架进行张量流,因为它简单.但是我希望卷积层具有偏差和批量标准化.在vanilla tensorflow中,我有:
def conv2d(input_, output_dim, k_h=5, k_w=5, d_h=2, d_w=2, name="conv2d"):
with tf.variable_scope(name):
w = tf.get_variable('w', [k_h, k_w, input_.get_shape()[-1], output_dim],
initializer=tf.contrib.layers.xavier_initializer(uniform=False))
conv = tf.nn.conv2d(input_, w, strides=[1, d_h, d_w, 1], padding='SAME')
biases = tf.get_variable('biases', [output_dim], initializer=tf.constant_initializer(0.0))
conv = tf.reshape(tf.nn.bias_add(conv, biases), conv.get_shape())
tf.summary.histogram("weights", w)
tf.summary.histogram("biases", biases)
return conv
d_bn1 = BatchNorm(name='d_bn1')
h1 = lrelu(d_bn1(conv2d(h0, df_dim + y_dim, name='d_h1_conv')))
Run Code Online (Sandbox Code Playgroud)
然后我把它重写为苗条:
h1 = slim.conv2d(h0,
num_outputs=self.df_dim + self.y_dim,
scope='d_h1_conv',
kernel_size=[5, 5],
stride=[2, 2],
activation_fn=lrelu,
normalizer_fn=layers.batch_norm,
normalizer_params=batch_norm_params,
weights_initializer=layers.xavier_initializer(uniform=False),
biases_initializer=tf.constant_initializer(0.0)
)
Run Code Online (Sandbox Code Playgroud)
但是这段代码不会给conv层增加偏见.那是因为https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/layers/python/layers/layers.py#L1025其中是
layer = layer_class(filters=num_outputs,
kernel_size=kernel_size,
strides=stride,
padding=padding,
data_format=df,
dilation_rate=rate,
activation=None,
use_bias=not normalizer_fn and biases_initializer,
kernel_initializer=weights_initializer,
bias_initializer=biases_initializer,
kernel_regularizer=weights_regularizer,
bias_regularizer=biases_regularizer,
activity_regularizer=None,
trainable=trainable,
name=sc.name,
dtype=inputs.dtype.base_dtype,
_scope=sc,
_reuse=reuse)
outputs = layer.apply(inputs)
Run Code Online (Sandbox Code Playgroud)
在构造层时,使用批量标准化时不会产生偏差.这是否意味着我不能同时使用slim和图层库进行偏差和批量标准化?或者是否有另一种方法可以在使用slim时实现层中的偏置和批量标准化?
Pat*_*wie 23
Batchnormalization已经包括增加偏差项.回顾一下BatchNorm已经是:
gamma * normalized(x) + bias
Run Code Online (Sandbox Code Playgroud)
因此,不需要(并且没有必要)在卷积层中添加另一个偏置项.简单来说,BatchNorm将激活的平均值移动.因此,任何常数都将被取消.
如果您仍想执行此操作,则需要删除normalizer_fn参数并将BatchNorm添加为单个图层.就像我说的,这没有任何意义.
但解决方案就是这样的
net = slim.conv2d(net, normalizer_fn=None, ...)
net = tf.nn.batch_normalization(net)
Run Code Online (Sandbox Code Playgroud)
请注意,BatchNorm依赖于非梯度更新.因此,您需要使用与UPDATE_OPS集合兼容的优化器.或者您需要手动添加tf.control_dependencies.
简而言之:即使你实现了ConvWithBias + BatchNorm,它的行为也会像ConvWithoutBias + BatchNorm一样.它与多个完全连接的层相同,没有激活功能将表现为单个层.
| 归档时间: |
|
| 查看次数: |
7232 次 |
| 最近记录: |