我有一个数据帧,如:
A B C
1 0 0
1 1 0
0 1 0
0 0 1
Run Code Online (Sandbox Code Playgroud)
我希望有 :
A B C label
1 0 0 A
1 1 0 AB
0 1 0 B
0 0 1 C
Run Code Online (Sandbox Code Playgroud)
我试图通过地图或申请,但我无法弄明白.
Ted*_*rou 21
这是一个惯用且高效的解决方案
df['label'] = np.where(df, df.columns, '').sum(axis=1)
A B C label
0 1 0 0 A
1 1 1 0 AB
2 0 1 0 B
3 0 0 1 C
Run Code Online (Sandbox Code Playgroud)
piR*_*red 13
运用 dot
df.assign(label=df.dot(df.columns))
A B C label
0 1 0 0 A
1 1 1 0 AB
2 0 1 0 B
3 0 0 1 C
Run Code Online (Sandbox Code Playgroud)
使用底层numpy数组也是如此
df.assign(label=df.values.dot(df.columns.values))
A B C label
0 1 0 0 A
1 1 1 0 AB
2 0 1 0 B
3 0 0 1 C
Run Code Online (Sandbox Code Playgroud)
In [101]: df['label'] = df.apply(lambda x: ''.join(df.columns[x.astype(bool)].tolist()), axis=1)
In [102]: df
Out[102]:
A B C label
0 1 0 0 A
1 1 1 0 AB
2 0 1 0 B
3 0 0 1 C
Run Code Online (Sandbox Code Playgroud)
PS我绝对会选择@Ted的解决方案,因为它更好,更快......更快
或使用melt和groupby
df1 = df.reset_index().melt('index')
df1 = df1[df1.value==1]
df['label'] = df1.groupby('index').variable.sum()
df
Out[976]:
A B C label
0 1 0 0 A
1 1 1 0 AB
2 0 1 0 B
3 0 0 1 C
Run Code Online (Sandbox Code Playgroud)
要么
df['label'] = df.T.apply(lambda x: ''.join(x.index[x==1]),axis=0)
df
Out[984]:
A B C label
0 1 0 0 A
1 1 1 0 AB
2 0 1 0 B
3 0 0 1 C
Run Code Online (Sandbox Code Playgroud)
df = df.assign(label=[''.join([df.columns[n] for n, bool in enumerate(row) if bool])
for _, row in df.iterrows()])
>>> df
A B C label
0 1 0 0 A
1 1 1 0 AB
2 0 1 0 B
3 0 0 1 C
Run Code Online (Sandbox Code Playgroud)
时机
# Set-up:
df_ = pd.concat([df] * 10000)
%%timeit
# Solution by @Wen
df1 = df_.reset_index().melt('index')
df1 = df1[df1.value==1]
df['label'] = df1.groupby('index').variable.sum()
# 10 loops, best of 3: 47.6 ms per loop
%%timeit
# Solution by @MaxU
df_['label'] = df_.apply(lambda x: ''.join(df_.columns[x.astype(bool)].tolist()), axis=1)
# 1 loop, best of 3: 4.99 s per loop
%%timeit
# Solution by @TedPetrou
df_['label'] = np.where(df_, df_.columns, '').sum(axis=1)
# 100 loops, best of 3: 12.5 ms per loop
%%timeit
# Solution by @Alexander
df_['label'] = [''.join([df_.columns[n] for n, bool in enumerate(row) if bool]) for _, row in df_.iterrows()]
# 1 loop, best of 3: 3.75 s per loop
%%time
# Solution by @PiRSquared
df_['label'] = df_.dot(df_.columns)
# CPU times: user 18.1 ms, sys: 706 µs, total: 18.8 ms
# Wall time: 18.9 ms
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
1158 次 |
| 最近记录: |