Rhu*_*lsb 10 grouping r counting dataframe
我想每计数country次数的数量statusIS open和的次数status为closed.然后计算closerate每个country.
数据:
customer <- c(1,2,3,4,5,6,7,8,9)
country <- c('BE', 'NL', 'NL','NL','BE','NL','BE','BE','NL')
closeday <- c('2017-08-23', '2017-08-05', '2017-08-22', '2017-08-26',
'2017-08-25', '2017-08-13', '2017-08-30', '2017-08-05', '2017-08-23')
closeday <- as.Date(closeday)
df <- data.frame(customer,country,closeday)
Run Code Online (Sandbox Code Playgroud)
添加status:
df$status <- ifelse(df$closeday < '2017-08-20', 'open', 'closed')
customer country closeday status
1 1 BE 2017-08-23 closed
2 2 NL 2017-08-05 open
3 3 NL 2017-08-22 closed
4 4 NL 2017-08-26 closed
5 5 BE 2017-08-25 closed
6 6 NL 2017-08-13 open
7 7 BE 2017-08-30 closed
8 8 BE 2017-08-05 open
9 9 NL 2017-08-23 closed
Run Code Online (Sandbox Code Playgroud)
计算 closerate
closerate <- length(which(df$status == 'closed')) /
(length(which(df$status == 'closed')) + length(which(df$status == 'open')))
[1] 0.6666667
Run Code Online (Sandbox Code Playgroud)
显然,这是closerate总数.挑战是获得closerate每个country.我尝试将closerate计算添加到df:
df$closerate <- length(which(df$status == 'closed')) /
(length(which(df$status == 'closed')) + length(which(df$status == 'open')))
Run Code Online (Sandbox Code Playgroud)
但是它给出了closerate0.66的所有行a ,因为我没有分组.我相信我不应该使用长度函数,因为计数可以通过分组来完成.我读了一些关于使用dplyr每组计算逻辑输出的信息,但这没有用.
这是所需的输出:

aggregate(list(output = df$status == "closed"),
list(country = df$country),
function(x)
c(close = sum(x),
open = length(x) - sum(x),
rate = mean(x)))
# country output.close output.open output.rate
#1 BE 3.00 1.00 0.75
#2 NL 3.00 2.00 0.60
Run Code Online (Sandbox Code Playgroud)
table在评论中使用的解决方案似乎已被删除.无论如何,你也可以使用table
output = as.data.frame.matrix(table(df$country, df$status))
output$closerate = output$closed/(output$closed + output$open)
output
# closed open closerate
#BE 3 1 0.75
#NL 3 2 0.60
Run Code Online (Sandbox Code Playgroud)