Kon*_*ong 12 docker keras tensorflow tensorflow-gpu
我用keras版本2.0.0和tensorflow版本0.12.1构建了docker 镜像https://github.com/floydhub/dl-docker的gpu版本.然后我运行了mnist教程https://github.com/fchollet/keras/blob/master/examples/mnist_cnn.py,但意识到keras没有使用GPU.以下是我的输出
root@b79b8a57fb1f:~/sharedfolder# python test.py
Using TensorFlow backend.
Downloading data from https://s3.amazonaws.com/img-datasets/mnist.npz
x_train shape: (60000, 28, 28, 1)
60000 train samples
10000 test samples
Train on 60000 samples, validate on 10000 samples
Epoch 1/12
2017-09-06 16:26:54.866833: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
2017-09-06 16:26:54.866855: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
2017-09-06 16:26:54.866863: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
2017-09-06 16:26:54.866870: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
2017-09-06 16:26:54.866876: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
如果在keras使用GPU之前需要进行一些设置,有人可以告诉我吗?我对所有这些都很新,所以如果我需要提供更多信息,请告诉我.
我已经安装了页面上提到的先决条件
我能够启动docker镜像
docker run -it -p 8888:8888 -p 6006:6006 -v /sharedfolder:/root/sharedfolder floydhub/dl-docker:cpu bash
我能够完成最后一步
cv@cv-P15SM:~$ cat /proc/driver/nvidia/version
NVRM version: NVIDIA UNIX x86_64 Kernel Module  375.66  Mon May  1 15:29:16 PDT 2017
GCC version:  gcc version 5.4.0 20160609 (Ubuntu 5.4.0-6ubuntu1~16.04.4)
我能够在这里运行这一步
# Test nvidia-smi
cv@cv-P15SM:~$ nvidia-docker run --rm nvidia/cuda nvidia-smi
Thu Sep  7 00:33:06 2017       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 375.66                 Driver Version: 375.66                    |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  GeForce GTX 780M    Off  | 0000:01:00.0     N/A |                  N/A |
| N/A   55C    P0    N/A /  N/A |    310MiB /  4036MiB |     N/A      Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID  Type  Process name                               Usage      |
|=============================================================================|
|    0                  Not Supported                                         |
+-----------------------------------------------------------------------------+
我也可以运行nvidia-docker命令来启动支持gpu的映像.
我试过了什么
我在下面尝试了以下建议
我将建议的行添加到我的bashrc并验证了bashrc文件已更新.
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-8.0/lib64:/usr/local/cuda-8.0/extras/CUPTI/lib64' >> ~/.bashrc
echo 'export CUDA_HOME=/usr/local/cuda-8.0' >> ~/.bashrc
在我的python文件中导入以下命令
import os
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"   # see issue #152
os.environ["CUDA_VISIBLE_DEVICES"]="0"
不幸的是,这两个步骤单独或一起完成并没有解决问题.Keras仍在以tensorflow的CPU版本作为后端运行.但是,我可能已经找到了可能的问题.我通过以下命令检查了我的tensorflow的版本,并找到了其中两个.
这是CPU版本
root@08b5fff06800:~# pip show tensorflow
Name: tensorflow
Version: 1.3.0
Summary: TensorFlow helps the tensors flow
Home-page: http://tensorflow.org/
Author: Google Inc.
Author-email: opensource@google.com
License: Apache 2.0
Location: /usr/local/lib/python2.7/dist-packages
Requires: tensorflow-tensorboard, six, protobuf, mock, numpy, backports.weakref, wheel
这是GPU版本
root@08b5fff06800:~# pip show tensorflow-gpu
Name: tensorflow-gpu
Version: 0.12.1
Summary: TensorFlow helps the tensors flow
Home-page: http://tensorflow.org/
Author: Google Inc.
Author-email: opensource@google.com
License: Apache 2.0
Location: /usr/local/lib/python2.7/dist-packages
Requires: mock, numpy, protobuf, wheel, six
有趣的是,输出显示keras使用的是tensorflow版本1.3.0,这是CPU版本而不是0.12.1,GPU版本
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K
import tensorflow as tf
print('Tensorflow: ', tf.__version__)
产量
root@08b5fff06800:~/sharedfolder# python test.py
Using TensorFlow backend.
Tensorflow:  1.3.0
我想我现在需要弄清楚如何让keras使用tensorflow的gpu版本.
des*_*aut 24
这是从未有两个是个好主意tensorflow,并tensorflow-gpu包并排安装(在一个单独的一次发生在我身上不小心,Keras使用的CPU版本).
我想我现在需要弄清楚如何让keras使用tensorflow的gpu版本.
您只需从系统中删除这两个软件包,然后重新安装tensorflow-gpu[评论后更新]:
pip uninstall tensorflow tensorflow-gpu
pip install tensorflow-gpu
此外,令人费解的是你为什么似乎使用floydhub/dl-docker:cpu容器,而根据说明你应该使用floydhub/dl-docker:gpu一个...
小智 5
我有类似的问题 - keras 没有使用我的 GPU。我根据 conda 中的说明安装了 tensorflow-gpu,但是在安装 keras 后,它根本没有将 GPU 列为可用设备。我意识到安装 keras 会添加 tensorflow 包!所以我有 tensorflow 和 tensorflow-gpu 包。我发现有 keras-gpu 包可用。完整卸载keras、tensorflow、tensorflow-gpu并安装tensorflow-gpu、keras-gpu后问题解决。
| 归档时间: | 
 | 
| 查看次数: | 18766 次 | 
| 最近记录: |