在函数中传播多个列

jor*_*ran 4 r dplyr tidyr rlang

通常我需要spread多个值列,就像在这个问题中一样.但我经常这样做,我希望能够编写一个这样做的功能.

例如,给定数据:

set.seed(42)
dat <- data_frame(id = rep(1:2,each = 2),
                  grp = rep(letters[1:2],times = 2),
                  avg = rnorm(4),
                  sd = runif(4))
> dat
# A tibble: 4 x 4
     id   grp        avg        sd
  <int> <chr>      <dbl>     <dbl>
1     1     a  1.3709584 0.6569923
2     1     b -0.5646982 0.7050648
3     2     a  0.3631284 0.4577418
4     2     b  0.6328626 0.7191123
Run Code Online (Sandbox Code Playgroud)

我想创建一个返回类似的函数:

# A tibble: 2 x 5
     id     a_avg      b_avg      a_sd      b_sd
  <int>     <dbl>      <dbl>     <dbl>     <dbl>
1     1 1.3709584 -0.5646982 0.6569923 0.7050648
2     2 0.3631284  0.6328626 0.4577418 0.7191123
Run Code Online (Sandbox Code Playgroud)

我怎样才能做到这一点?

jor*_*ran 7

我们将回到与之相关的问题中提供的答案,但是暂时让我们从一个更天真的方法开始.

一个想法是分别对spread每个值列,然后加入结果,即

library(dplyr)
library(tidyr)
library(tibble)

dat_avg <- dat %>% 
    select(-sd) %>%
    spread(key = grp,value = avg) %>%
    rename(a_avg = a,
           b_avg = b)

dat_sd <- dat %>% 
    select(-avg) %>%
    spread(key = grp,value = sd) %>%
    rename(a_sd = a,
           b_sd = b)

> full_join(dat_avg,
          dat_sd,
          by = 'id')

# A tibble: 2 x 5
     id     a_avg      b_avg      a_sd      b_sd
  <int>     <dbl>      <dbl>     <dbl>     <dbl>
1     1 1.3709584 -0.5646982 0.6569923 0.7050648
2     2 0.3631284  0.6328626 0.4577418 0.7191123
Run Code Online (Sandbox Code Playgroud)

(我使用了一个full_join以防万一我们遇到并非所有连接列的组合出现在所有组合中的情况.)

让我们从一个类似spread但允许您将列keyvalue列作为字符传递的函数开始:

spread_chr <- function(data, key_col, value_cols, fill = NA, 
                       convert = FALSE,drop = TRUE,sep = NULL){
    n_val <- length(value_cols)
    result <- vector(mode = "list", length = n_val)
    id_cols <- setdiff(names(data), c(key_col,value_cols))

    for (i in seq_along(result)){
        result[[i]] <- spread(data = data[,c(id_cols,key_col,value_cols[i]),drop = FALSE],
                              key = !!key_col,
                              value = !!value_cols[i],
                              fill = fill,
                              convert = convert,
                              drop = drop,
                              sep = paste0(sep,value_cols[i],sep))
    }

    result %>%
        purrr::reduce(.f = full_join, by = id_cols)
}

> dat %>%
  spread_chr(key_col = "grp",
             value_cols = c("avg","sd"),
             sep = "_")

# A tibble: 2 x 5
     id grp_avg_a  grp_avg_b  grp_sd_a  grp_sd_b
  <int>     <dbl>      <dbl>     <dbl>     <dbl>
1     1 1.3709584 -0.5646982 0.6569923 0.7050648
2     2 0.3631284  0.6328626 0.4577418 0.7191123
Run Code Online (Sandbox Code Playgroud)

这里的关键思想是取消引用参数key_colvalue_cols[i]使用!!运算符,并使用sep参数spread来控制结果值列名.

如果我们想要将此函数转换为接受键和值列的不带引号的参数,我们可以像这样修改它:

spread_nq <- function(data, key_col,..., fill = NA, 
                      convert = FALSE, drop = TRUE, sep = NULL){
    val_quos <- rlang::quos(...)
    key_quo <- rlang::enquo(key_col)
    value_cols <- unname(tidyselect::vars_select(names(data),!!!val_quos))
    key_col <- unname(tidyselect::vars_select(names(data),!!key_quo))

    n_val <- length(value_cols)
    result <- vector(mode = "list",length = n_val)
    id_cols <- setdiff(names(data),c(key_col,value_cols))

    for (i in seq_along(result)){
        result[[i]] <- spread(data = data[,c(id_cols,key_col,value_cols[i]),drop = FALSE],
                              key = !!key_col,
                              value = !!value_cols[i],
                              fill = fill,
                              convert = convert,
                              drop = drop,
                              sep = paste0(sep,value_cols[i],sep))
    }

    result %>%
        purrr::reduce(.f = full_join,by = id_cols)
}

> dat %>%
  spread_nq(key_col = grp,avg,sd,sep = "_")

# A tibble: 2 x 5
     id grp_avg_a  grp_avg_b  grp_sd_a  grp_sd_b
  <int>     <dbl>      <dbl>     <dbl>     <dbl>
1     1 1.3709584 -0.5646982 0.6569923 0.7050648
2     2 0.3631284  0.6328626 0.4577418 0.7191123
Run Code Online (Sandbox Code Playgroud)

这里的变化是我们使用rlang::quos和捕获不带引号的参数,rlang::enquo然后使用简单地将它们转换回字符tidyselect::vars_select.

回到使用序列的链接问题的解决方案gather,unite并且spread,我们可以使用我们学到的东西来制作这样的函数:

spread_nt <- function(data,key_col,...,fill = NA,
                      convert = TRUE,drop = TRUE,sep = "_"){
  key_quo <- rlang::enquo(key_col)
  val_quos <- rlang::quos(...)
  value_cols <- unname(tidyselect::vars_select(names(data),!!!val_quos))
  key_col <- unname(tidyselect::vars_select(names(data),!!key_quo))

  data %>%
    gather(key = ..var..,value = ..val..,!!!val_quos) %>%
    unite(col = ..grp..,c(key_col,"..var.."),sep = sep) %>%
    spread(key = ..grp..,value = ..val..,fill = fill,
           convert = convert,drop = drop,sep = NULL)
}

> dat %>%
  spread_nt(key_col = grp,avg,sd,sep = "_")

# A tibble: 2 x 5
     id     a_avg      a_sd      b_avg      b_sd
* <int>     <dbl>     <dbl>      <dbl>     <dbl>
1     1 1.3709584 0.6569923 -0.5646982 0.7050648
2     2 0.3631284 0.4577418  0.6328626 0.7191123
Run Code Online (Sandbox Code Playgroud)

这依赖于上一个例子中来自rlang的相同技术.我们使用一些不寻常的名称,例如..var..我们的中间变量,以减少名称与数据框中现有列冲突的可能性.

另外,我们使用sep参数unite来控制结果列名,所以在这种情况下spread我们强制使用sep = NULL.