Kev*_*ier 20 machine-learning keras keras-2
我试图用Keras实现加权二进制交叉熵,但我不确定代码是否正确.训练输出似乎有点令人困惑.在几个时代之后,我得到的精确度为~0.15.我认为这太少了(即使是随机猜测).
输出中通常有大约11%的值和89%的零,因此权重为w_zero = 0.89且w_one = 0.11.
我的代码:
def create_weighted_binary_crossentropy(zero_weight, one_weight):
def weighted_binary_crossentropy(y_true, y_pred):
# Original binary crossentropy (see losses.py):
# K.mean(K.binary_crossentropy(y_true, y_pred), axis=-1)
# Calculate the binary crossentropy
b_ce = K.binary_crossentropy(y_true, y_pred)
# Apply the weights
weight_vector = y_true * one_weight + (1. - y_true) * zero_weight
weighted_b_ce = weight_vector * b_ce
# Return the mean error
return K.mean(weighted_b_ce)
return weighted_binary_crossentropy
Run Code Online (Sandbox Code Playgroud)
也许有人看到什么错了?
谢谢
Yu-*_*ang 11
通常,少数群体的权重较高。最好使用one_weight=0.89, zero_weight=0.11(顺便说一句,您可以使用class_weight={0: 0.11, 1: 0.89},如注释中所建议)。
在类不平衡的情况下,您的模型看到的零比零多得多。它还将学会预测比零更多的零,因为这样做可以最大程度地减少训练损失。这就是为什么您看到的精度接近比例0.11的原因。如果对模型预测取平均值,则该平均值应非常接近零。
使用类权重的目的是更改损失函数,以使“简单的解决方案”(即预测零)无法将训练损失降至最低,这就是为什么对那些使用更高的权重会更好的原因。
请注意,最佳权重不一定是0.89和0.11。有时,您可能需要尝试采用对数或平方根(或任何满足的权重one_weight > zero_weight)以使其起作用。
tsv*_*iko 10
您可以使用sklearn模块自动为每个类计算权重,如下所示:
# Import
import numpy as np
from sklearn.utils import class_weight
# Example model
model = Sequential()
model.add(Dense(32, activation='relu', input_dim=100))
model.add(Dense(1, activation='sigmoid'))
# Use binary crossentropy loss
model.compile(optimizer='rmsprop',
loss='binary_crossentropy',
metrics=['accuracy'])
# Calculate the weights for each class so that we can balance the data
weights = class_weight.compute_class_weight('balanced',
np.unique(y_train),
y_train)
# Add the class weights to the training
model.fit(x_train, y_train, epochs=10, batch_size=32, class_weight=weights)
Run Code Online (Sandbox Code Playgroud)
请注意,的输出class_weight.compute_class_weight()是一个numpy数组,如下所示:[2.57569845 0.68250928]。
使用class_weightsinmodel.fit略有不同:它实际上更新样本而不是计算加权损失。
我还发现,当作为 TFDataset 或生成器发送到 model.fit 时,class_weights以及sample_weights,在 TF 2.0.0 中会被忽略。x我相信它在 TF 2.1.0+ 中已修复。
这是我的多热编码标签的加权二元交叉熵函数。
import tensorflow as tf
import tensorflow.keras.backend as K
import numpy as np
# weighted loss functions
def weighted_binary_cross_entropy(weights: dict, from_logits: bool = False):
'''
Return a function for calculating weighted binary cross entropy
It should be used for multi-hot encoded labels
# Example
y_true = tf.convert_to_tensor([1, 0, 0, 0, 0, 0], dtype=tf.int64)
y_pred = tf.convert_to_tensor([0.6, 0.1, 0.1, 0.9, 0.1, 0.], dtype=tf.float32)
weights = {
0: 1.,
1: 2.
}
# with weights
loss_fn = get_loss_for_multilabels(weights=weights, from_logits=False)
loss = loss_fn(y_true, y_pred)
print(loss)
# tf.Tensor(0.6067193, shape=(), dtype=float32)
# without weights
loss_fn = get_loss_for_multilabels()
loss = loss_fn(y_true, y_pred)
print(loss)
# tf.Tensor(0.52158177, shape=(), dtype=float32)
# Another example
y_true = tf.convert_to_tensor([[0., 1.], [0., 0.]], dtype=tf.float32)
y_pred = tf.convert_to_tensor([[0.6, 0.4], [0.4, 0.6]], dtype=tf.float32)
weights = {
0: 1.,
1: 2.
}
# with weights
loss_fn = get_loss_for_multilabels(weights=weights, from_logits=False)
loss = loss_fn(y_true, y_pred)
print(loss)
# tf.Tensor(1.0439969, shape=(), dtype=float32)
# without weights
loss_fn = get_loss_for_multilabels()
loss = loss_fn(y_true, y_pred)
print(loss)
# tf.Tensor(0.81492424, shape=(), dtype=float32)
@param weights A dict setting weights for 0 and 1 label. e.g.
{
0: 1.
1: 8.
}
For this case, we want to emphasise those true (1) label,
because we have many false (0) label. e.g.
[
[0 1 0 0 0 0 0 0 0 1]
[0 0 0 0 1 0 0 0 0 0]
[0 0 0 0 1 0 0 0 0 0]
]
@param from_logits If False, we apply sigmoid to each logit
@return A function to calcualte (weighted) binary cross entropy
'''
assert 0 in weights
assert 1 in weights
def weighted_cross_entropy_fn(y_true, y_pred):
tf_y_true = tf.cast(y_true, dtype=y_pred.dtype)
tf_y_pred = tf.cast(y_pred, dtype=y_pred.dtype)
weights_v = tf.where(tf.equal(tf_y_true, 1), weights[1], weights[0])
weights_v = tf.cast(weights_v, dtype=y_pred.dtype)
ce = K.binary_crossentropy(tf_y_true, tf_y_pred, from_logits=from_logits)
loss = K.mean(tf.multiply(ce, weights_v))
return loss
return weighted_cross_entropy_fn
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
12499 次 |
| 最近记录: |