我想在 keras 中制作自定义优化器。为此,我以自定义方式重新实现了 sgd,我的意思是我为此定义了类(用于二进制分类的 MLP),我将优化器命名为“myopt”。以下是代码:
from __future__ import absolute_import
import tensorflow as tf
import six
import copy
from six.moves import zip
from keras.utils.generic_utils import serialize_keras_object
from keras.utils.generic_utils import deserialize_keras_object
from keras.legacy import interfaces
from keras import backend as K
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Dropout
# Generate dummy data
x_train = np.random.random((1000, 20))
y_train = np.random.randint(2, size=(1000, 1))
x_test = np.random.random((100, 20))
y_test = np.random.randint(2, size=(100, 1))
model = Sequential()
model.add(Dense(64, input_dim=20, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))
def clip_norm(g, c, n):
if c <= 0: # if clipnorm == 0 no need to add ops to the graph
return g
# tf require using a special op to multiply IndexedSliced by scalar
if K.backend() == 'tensorflow':
condition = n >= c
then_expression = tf.scalar_mul(c / n, g)
else_expression = g
# saving the shape to avoid converting sparse tensor to dense
if isinstance(then_expression, tf.Tensor):
g_shape = copy.copy(then_expression.get_shape())
elif isinstance(then_expression, tf.IndexedSlices):
g_shape = copy.copy(then_expression.dense_shape)
if condition.dtype != tf.bool:
condition = tf.cast(condition, 'bool')
g = tf.cond(condition,
lambda: then_expression,
lambda: else_expression)
if isinstance(then_expression, tf.Tensor):
g.set_shape(g_shape)
elif isinstance(then_expression, tf.IndexedSlices):
g._dense_shape = g_shape
else:
g = K.switch(K.greater_equal(n, c), g * c / n, g)
return g
class Optimizer(object):
"""Abstract optimizer base class.
Note: this is the parent class of all optimizers, not an actual optimizer
that can be used for training models.
All Keras optimizers support the following keyword arguments:
clipnorm: float >= 0. Gradients will be clipped
when their L2 norm exceeds this value.
clipvalue: float >= 0. Gradients will be clipped
when their absolute value exceeds this value.
"""
def __init__(self, **kwargs):
allowed_kwargs = {'clipnorm', 'clipvalue'}
for k in kwargs:
if k not in allowed_kwargs:
raise TypeError('Unexpected keyword argument '
'passed to optimizer: ' + str(k))
self.__dict__.update(kwargs)
self.updates = []
self.weights = []
@interfaces.legacy_get_updates_support
def get_updates(self, loss, params):
raise NotImplementedError
def get_gradients(self, loss, params):
grads = K.gradients(loss, params)
if hasattr(self, 'clipnorm') and self.clipnorm > 0:
norm = K.sqrt(sum([K.sum(K.square(g)) for g in grads]))
grads = [clip_norm(g, self.clipnorm, norm) for g in grads]
if hasattr(self, 'clipvalue') and self.clipvalue > 0:
grads = [K.clip(g, -self.clipvalue, self.clipvalue) for g in grads]
return grads
def set_weights(self, weights):
"""Sets the weights of the optimizer, from Numpy arrays.
Should only be called after computing the gradients
(otherwise the optimizer has no weights).
# Arguments
weights: a list of Numpy arrays. The number
of arrays and their shape must match
number of the dimensions of the weights
of the optimizer (i.e. it should match the
output of `get_weights`).
# Raises
ValueError: in case of incompatible weight shapes.
"""
params = self.weights
weight_value_tuples = []
param_values = K.batch_get_value(params)
for pv, p, w in zip(param_values, params, weights):
if pv.shape != w.shape:
raise ValueError('Optimizer weight shape ' +
str(pv.shape) +
' not compatible with '
'provided weight shape ' + str(w.shape))
weight_value_tuples.append((p, w))
K.batch_set_value(weight_value_tuples)
def get_weights(self):
"""Returns the current value of the weights of the optimizer.
# Returns
A list of numpy arrays.
"""
return K.batch_get_value(self.weights)
def get_config(self):
config = {}
if hasattr(self, 'clipnorm'):
config['clipnorm'] = self.clipnorm
if hasattr(self, 'clipvalue'):
config['clipvalue'] = self.clipvalue
return config
@classmethod
def from_config(cls, config):
return cls(**config)
class testsgd(Optimizer):
"""Stochastic gradient descent optimizer.
Includes support for momentum,
learning rate decay, and Nesterov momentum.
# Arguments
lr: float >= 0. Learning rate.
momentum: float >= 0. Parameter updates momentum.
decay: float >= 0. Learning rate decay over each update.
nesterov: boolean. Whether to apply Nesterov momentum.
"""
def __init__(self, lr=0.01, momentum=0., decay=0.,
nesterov=False, **kwargs):
super(testsgd, self).__init__(**kwargs)
with K.name_scope(self.__class__.__name__):
self.iterations = K.variable(0, dtype='int64', name='iterations')
self.lr = K.variable(lr, name='lr')
self.momentum = K.variable(momentum, name='momentum')
self.decay = K.variable(decay, name='decay')
self.initial_decay = decay
self.nesterov = nesterov
@interfaces.legacy_get_updates_support
def get_updates(self, loss, params):
grads = self.get_gradients(loss, params)
self.updates = [K.update_add(self.iterations, 1)]
lr = self.lr
if self.initial_decay > 0:
lr *= (1. / (1. + self.decay * K.cast(self.iterations,
K.dtype(self.decay))))
# momentum
shapes = [K.int_shape(p) for p in params]
moments = [K.zeros(shape) for shape in shapes]
self.weights = [self.iterations] + moments
for p, g, m in zip(params, grads, moments):
v = self.momentum * m - lr * g # velocity
self.updates.append(K.update(m, v))
if self.nesterov:
new_p = p + self.momentum * v - lr * g
else:
new_p = p + v
# Apply constraints.
if getattr(p, 'constraint', None) is not None:
new_p = p.constraint(new_p)
self.updates.append(K.update(p, new_p))
return self.updates
def get_config(self):
config = {'lr': float(K.get_value(self.lr)),
'momentum': float(K.get_value(self.momentum)),
'decay': float(K.get_value(self.decay)),
'nesterov': self.nesterov}
base_config = super(testsgd, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
myopt = testsgd()
model.compile(loss='binary_crossentropy',
optimizer=myopt,
metrics=['accuracy'])
model.fit(x_train, y_train,
epochs=20,
batch_size=128)
score = model.evaluate(x_test, y_test, batch_size=128)
Run Code Online (Sandbox Code Playgroud)
收到以下错误:@interfaces.legacy_get_updates_support
AttributeError: module 'keras.legacy.interfaces' has no attribute 'legacy_get_updates_support'
如何解决。
您可以定义自己的派生自 Optimizer 基类的类,并将其放入单独的 .py 文件中,而不是复制粘贴 keras 的 optimizers.py。例如,下面是没有动量或 Nesterov 的 SGD 的简化版本。将其放在名为 sgd_cust.py 的文件中。
from keras.optimizers import Optimizer
from keras.legacy import interfaces
from keras import backend as K
class SGDCust(Optimizer):
"""Stochastic gradient descent optimizer.
# Arguments
lr: float >= 0. Learning rate.
"""
def __init__(self, lr=0.01, **kwargs):
super(SGDCust, self).__init__(**kwargs)
with K.name_scope(self.__class__.__name__):
self.iterations = K.variable(0, dtype='int64', name='iterations')
self.lr = K.variable(lr, name='lr')
@interfaces.legacy_get_updates_support
def get_updates(self, loss, params):
grads = self.get_gradients(loss, params)
self.updates = [K.update_add(self.iterations, 1)]
lr = self.lr
shapes = [K.int_shape(p) for p in params]
delta_ws = [K.zeros(shape) for shape in shapes]
self.weights = [self.iterations] + delta_ws
for p, g, delta_wi in zip(params, grads, delta_ws):
delta_w = - lr * g # velocity
self.updates.append(K.update(delta_wi, delta_w))
new_p = p + delta_w
# Apply constraints.
if getattr(p, 'constraint', None) is not None:
new_p = p.constraint(new_p)
self.updates.append(K.update(p, new_p))
return self.updates
def get_config(self):
config = {'lr': float(K.get_value(self.lr))}
base_config = super(SGDCust, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
Run Code Online (Sandbox Code Playgroud)
现在您可以使用您的自定义优化器,如下所示:
from __future__ import print_function
from sklearn.model_selection import train_test_split
import keras
from keras.datasets import mnist
from keras.models import Sequential
from sgd_cust import SGDCust
from keras import backend as K
batch_size = 10
num_classes = 10
epochs = 5
# the data, shuffled and split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.reshape(60000, 784).astype('float32') / 255
x_test = x_test_official.reshape(10000, 784).astype('float32') / 255
y_train = keras.utils.to_categorical(y_train, num_classes).astype('float32')
y_test = keras.utils.to_categorical(y_test, num_classes).astype('float32')
model = Sequential()
rnd_normal_init = keras.initializers.glorot_normal()
model.add(Dense(30, activation='relu',
kernel_initializer=rnd_normal_init,
bias_initializer=rnd_normal_init, input_shape=(784,)))
model.add(Dense(num_classes, activation='softmax',
kernel_initializer=rnd_normal_init,
bias_initializer=rnd_normal_init))
model.summary()
model.compile(loss='categorical_crossentropy', #sum_squared_error
optimizer=SGDCust(lr=0.1),
metrics=['categorical_accuracy'])
history = model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=2,
validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
Run Code Online (Sandbox Code Playgroud)