Dan*_*iel 2 r date lapply data.table
我想知道如何获得date difference的two column在data.table使用lapply中data.table?
library(data.table)
dt <- fread(" ID Date ME_Mes DOB
A 2017-02-20 0.0000 2016-08-19
B 2017-02-06 2.3030 2016-03-11
C 2017-03-20 0.4135 2016-08-19
D 2017-03-06 0.0480 2016-10-09
E 2017-04-20 2.4445 2016-05-04")
> dt
ID Date ME_Mes DOB
1: A 2017-02-20 0.0000 2016-08-19
2: B 2017-02-06 2.3030 2016-03-11
3: C 2017-03-20 0.4135 2016-08-19
4: D 2017-03-06 0.0480 2016-10-09
5: E 2017-04-20 2.4445 2016-05-04
###I'd like to calculate the difference in weeks for every ID by comparing the DOB-Date.
Run Code Online (Sandbox Code Playgroud)
我累了以下几点:
dt[,lapply(.SD, diff.Date), .SDcols = c(4,2), ID] # but did not work!
Run Code Online (Sandbox Code Playgroud)
您可以使用difftime来获得以周为单位的差异。虽然,您需要将列转换为POSIXct.
如果您想保持列的类别不变,则可以这样做:
dt[, "DOB_Date" := difftime(strptime(dt$Date, format = "%Y-%m-%d"),
strptime(dt$DOB, format = "%Y-%m-%d"), units = "weeks")]
dt
## ID Date ME_Mes DOB DOB_Date
## 1: A 2017-02-20 0.0000 2016-08-19 26.43452 weeks
## 2: B 2017-02-06 2.3030 2016-03-11 47.42857 weeks
## 3: C 2017-03-20 0.4135 2016-08-19 30.42857 weeks
## 4: D 2017-03-06 0.0480 2016-10-09 21.14881 weeks
## 5: E 2017-04-20 2.4445 2016-05-04 50.14286 weeks
Run Code Online (Sandbox Code Playgroud)
但是,正如@Frank建议的那样,最好先将日期列转换(“覆盖”)为POSIXct类。